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Precision Development (PxD) and the Institute for Governance & Sustainable Development (IGSD) are 
partnering on a unique initiative to collaboratively identify opportunities for innovation in climate change 
mitigation, particularly for the greenhouse gases most problematic in agricultural production, methane and 
nitrous oxide, as well as carbon dioxide. We are specifically focused on innovations with pertinence to the 
world’s smallholder farmers, who farm most of the world’s approximately 570 million farms.1 The Food and 
Agriculture Organization of the United Nations defines these smallholder farmers as “small-scale farmers, 
pastoralists, forest keepers, fishers who manage areas varying from less than one hectare to 10 hectares…
and are characterized by family-focused motives such as favouring the stability of the farm household system, 
using mainly family labour for production and using part of the produce for family consumption.”2 The majority 
of farms in the Global South3, a term used to denote the regions of Asia, Latin America, Africa, and Oceania, are 
small and it is within this broad geography and smallholder farming context which we focus our climate change 
mitigation initiative.  

This initiative includes four analytical pieces on the following opportunities for climate change mitigation by 
smallholder famers: 

 • carbon dioxide sequestration through enhanced rock weathering,

 • carbon dioxide sequestration through conserving (keeping what is already present) or increasing (i.e., 
sequestering) the organic carbon storage in soils and plant biomass,

 • nitrous oxide mitigation through precision nutrient management, and

 • methane mitigation in dairy through improved livestock feeding practices.

In our initiative we are guided by the following principles:
Consider the tradeoffs: We aim to determine smallholder farmers’ private returns from the adoption of new 
technologies or agricultural practices, as well as the societal return of such adoption as measured by gauging 
the impact of these innovations on our main outcome of interest in climate change mitigation, namely, reducing 
greenhouse gas (GHG) emissions.

Farmer welfare first: Smallholder farmers cannot be expected to pay the price for climate change mitigation. 
Climate change-related advisory should support livelihoods, especially as sustained adoption cannot occur 
without realized benefits for farmers. If it is difficult to understand a priori how a specific agricultural practice 
or technology might impact yields or income, we commit to exploring ways to compensate early adopters as 
payment for promoting the broader social benefit.

Replicate and scale: We aim to deliver impact at scale. We are particularly interested in low-cost climate 
change mitigation innovations with strong adoption potential, that can be customized to local contexts, and 
scaled throughout other regions with similar constraints or needs.

Our goal is to identify opportunities in agriculture with potential benefits for smallholder farmers, either directly 
or through compensation mechanisms for their environmental services, as well as for GHG mitigation. In identi-
fying these opportunities, we will outline the evidence for impact on farmers' outcomes and on GHG-mitigation 
outcomes as well as address challenges in building that evidence, particularly in outcome measurement 
methods. We will also address practical next steps to build a pathway to scale for the identified opportunities. 

Initiative Overview

https://precisiondev.org/
https://www.igsd.org/
https://www.igsd.org/
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About Precision Development (PxD)

Precision Development (PxD) is a global non-profit organization that harnesses 
technology, data science, and behavioral economics to build digital services 
that empower people to change their own lives. We build low-cost information 
systems at scale to share knowledge with the world’s poorest and most 
disadvantaged people. Our pioneering model of digital development is 
implemented in collaboration with partner organizations to maximize scale. We 
continuously experiment, iterate, and gather evidence on our impact to improve 
service delivery and demonstrate our value. Most of PxD’s services deliver 
customized digital agricultural advisory to smallholder farmers, with more than 
6 million users using these services in 2022. Given the many constraints facing 
these farmers, PxD is investigating the application of our platforms and core 
competencies to deliver advisory in new informational fields, including climate 
change adaptation and mitigation, as the effects of global warming ripple 
through the agriculture sector.

About the Institute for Governance & 
Sustainable Development (IGSD)
The Institute for Governance & Sustainable Development (IGSD) promotes 
just and sustainable societies, specifically through building resilience by 
accelerating fast climate change mitigation actions to slow near-term warming 
and self-reinforcing climate feedbacks, avoid catastrophic climate and societal 
tipping points, and limit global temperature increase to 1.5°C—or at least 
keep this temperature guardrail in sight. IGSD’s latest research shows that 
decarbonization alone is insufficient to slow near-term warming to keep us 
below 1.5°C or even the more dangerous 2°C guardrail, and that the fastest 
and most effective strategy is to combine the marathon to zero out carbon 
dioxide (CO2) emissions by decarbonizing the energy system with the sprint 
to rapidly cut non-CO2 super climate pollutants, and to protect carbon sinks. 
The super climate pollutants include four short-lived climate pollutants 
(SLCPs)—methane (CH4), hydrofluorocarbons (HFCs), black carbon soot, and 
tropospheric ozone (O3)—as well as the longer-lived nitrous oxide (N2O).
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1. Executive Summary 
Enhanced rock, or silicate, weathering (ERW) is a developing technology which leverages 
natural mineral weathering to draw carbon from the atmosphere. Currently it has primarily 
been studied, developed and implemented in the Global North. For example, Frontier,4 with 
its innovative advanced market commitment5 to accelerate carbon removal strategies, has 
invested in multiple companies pioneering ERW, but as of this writing it focuses solely on 
Global North geographies like the United States and the United Kingdom.

In the ERW process, finely ground rocks are applied to soils to drive chemical reactions 
which capture atmospheric carbon and convert it into stable dissolved forms. These stable 
forms of carbon then flow out through groundwater into the oceans, where they are stored 
on the scale of thousands of years. ERW is thus considered a permanent carbon removal 
strategy, unlike other land-based strategies like agroforestry or agronomic practices that 
sequester soil organic carbon, as EWR does not require continued implementation to ensure 
carbon drawdown. Scientific studies also find promising positive impacts from ERW on 
important farmer outcomes, like crop yields, when applied to agricultural land.  

ERW’s potential for permanent carbon drawdown and agricultural co-benefits makes it an 
attractive mitigation strategy, particularly in equator and near-equator geographies like the 
Global South, where there are ideal soil pH, temperature, and moisture conditions for the 
technology. However, because ERW is a new technology that is still being tested and has 
yet to be studied in Global South contexts, there remain critical uncertainties around its 
safety, carbon sequestration potential, probable benefits to farmers, and feasibility. All of 
these factors must be addressed in order to move the technology forward. With coordinated 
efforts by the scientific and international development communities to address these 
uncertainties, however, ERW could become an important tool to limit global warming to the 
1.5 to 2°C targets of the Paris Agreement adopted in 2015 by parties to the United Nations 
Framework Convention on Climate Change (UNFCCC).

https://frontierclimate.com/
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2. The Opportunity of Enhanced Rock 
Weathering
The agricultural, forestry, and land-use sector is one of the highest greenhouse gas (GHG) 
emitting sectors worldwide.6 In the Global South, agriculture and land-use change are 
the major emitters of carbon dioxide as well as other potent greenhouse gases, such as 
methane and nitrous oxide. However, producing food and managing land are not exclusively 
greenhouse gas-emitting practices. Some strategies for managing land and growing food 
can remove carbon dioxide from the atmosphere (e.g., soil carbon sequestration, afforesta-
tion). Reducing net greenhouse gas emissions from agriculture, a key sector for economic 
development in the Global South, will be a critical goal in the coming century as climate 
change contributes additional stressors to food security, biodiversity, land management, and 
resource use. In particular, strategies are needed to concomitantly supply more food in the 
face of climate stressors, conserve more land for biodiversity, and remove GHGs from the 
atmosphere. 

Enhanced rock weathering is one such strategy that can improve land productivity and food 
security while also removing carbon dioxide from the atmosphere.7 ERW is the process of 
converting carbon dioxide in soil (eq. 1), which would otherwise enter the atmosphere, into 
stable water-soluble and mineral carbon forms (bicarbonates and carbonates) by applying 
powdered (20-200 micron grain size) silicate rocks, rich in magnesium and calcium (e.g., 
basalt), to increase soil pH (eq. 2). These stable carbon forms (eq. 3) are ultimately deposited 
through groundwater into the oceans for permanent storage for thousands of years.   

Enhanced Rock Weathering Equations: 

4CO2+ 4H2O → 4H2CO3 (carbonic acid)  (1)

4H2CO3 (carbonic acid) + Mg2SiO4 (mineral) → 2Mg2+ + 4HCO3
- + H4SiO4   (2)

2Mg2+ + 4HCO3
- → 2MgCO3 (solid) + 2CO2+ 2H2O     (3)

Carbon dioxide naturally exists in soil water in part as carbonic acid (eq. 1). When in the presence 
of fresh mineral surfaces, carbonic acid interacts with those minerals (e.g., Mg2SiO4, one of the 
magnesium silicate minerals used in ERW) to form free magnesium ions in soil water solution and 
results in partition of aqueous CO2 into bicarbonate, HCO3

- which increases soil pH, and dissolved 
silica, H4SiO4 (eq. 2). Under certain soil or water conditions, those magnesium and bicarbonate ions 
can further react to precipitate solid carbonate minerals (e.g., MgCO3), which releases one of the 
bicarbonate ions back to CO2 (eq. 3). 



Enhanced Rock Weathering in the Global South:  
Exploring Potential for Enhanced Agricultural Productivity and Carbon dioxide Drawdown

3

Schematic illustration of the steps involved in sourcing material for ERW and the reactions in the soil 
that convert carbon dioxide into water-soluble bicarbonate. Once converted, this inorganic carbon can 
flow with groundwater into streams, rivers, and eventually the ocean, or it can precipitate as carbonate 
minerals in soils and sediments.

ERW’s soil carbon sequestration potential was first mentioned in scientific literature in 1990,8 
but the use of silicate rock soil amendments is not a new agricultural practice. There are 
examples of farming communities, largely across temperate regions (e.g., North America, 
Central Europe)9  and Africa,10 implementing these types of amendments to provide micronu-
trients to soils since at least the 19th century. ERW increases the pH of soils, so it can improve 
nutrient retention of acidic soils (low pH) such as those common in the tropics and Global 
South.11 While lime (e.g., CaCO3) is more commonly applied to achieve such pH improve-
ments, its application can generate a net carbon dioxide emission in many, though not all, 
soils (CaCO3 + 2H+ →Ca2+ + CO2 + H2O).12 The reduced GHG emissions from the application 
of silicate rocks thus makes the rocks a desirable alternative to lime, although their rate of 
dissolution, and thus speed of pH improvement, is slower. 

ERW’s potential to improve nutrient retention by agricultural soils, thereby improving yields, is 
an important co-benefit as it not only improves the likelihood of adoption by farmers but can 
also help address land conversion pressure which leads to deforestation, providing additional 
benefits to the climate and local biodiversity.13 Growing economic incentives for carbon 
dioxide removal through carbon offset markets may also enable more diversified revenue 
streams for farmers and land managers deploying ERW, which is especially important in the 
Global South where smallholder farmers are extremely financially constrained.

Figure 1. The ERW Process
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3. ERW Compared to Other Soil- and 
Land-based Mitigation Strategies
Enhanced Rock Weathering aims to drawdown carbon dioxide by storing it as inorganic 
carbon to provide long-term carbon dioxide sequestration.14 Once carbon dioxide is 
converted to water-soluble bicarbonate in soil through ERW, it can flow with groundwater 
into streams, rivers, and eventually the ocean, or it can precipitate as carbonate minerals 
in soils and sediments.15 Bicarbonate is generally stable in waters for tens to hundreds 
of thousands of years,16 and carbonate minerals can be stable for hundreds of millions 
to billions of years.17 Climate change mitigation requires carbon storage to be stable 
for as long as possible, to reduce the potential for carbon dioxide to be returned to the 
atmosphere. ERW is thus extremely promising in the permanence of its carbon drawdown. 

Current soil- and land-based carbon sequestration strategies mostly focus on converting 
carbon dioxide into organic carbon (e.g., forest biomass, soil organic carbon), by improving 
photosynthesis via agroforestry, or increasing soil organic matter through practices like 
minimum-to-no tillage, intercropping, and increased crop residue retention in soils.18 
However, organic carbon compounds are stable for much shorter timescales than inorganic 
carbon compounds, and are susceptible to conversion back to carbon dioxide through 
numerous processes including the resumption of tillage,19 rising temperature,20 and 
wildfire.21 As a result, organic carbon sequestration is considered a less permanent climate 
change mitigation strategy, and is valued less than inorganic carbon in most carbon offset 
markets.22 Organic carbon buildup in soils is still an important goal to advance sustain-
ability and development, with clear improvements in soil nutrient retention, water retention, 
and climate resilience23—but its utility in climate solutions is lower than strategies like ERW 
that generate inorganic carbon.

It should be noted that, theoretically, ERW may also contribute to organic carbon buildup, 
as it adds nutrients to the soil and thus improves plant growth.24 However, this process 
has not been studied or demonstrated previously.25 Analyses reviewed in this paper 
exclude these potential biological stores and primarily focus on ERW’s inorganic carbon 
sequestration benefits.26 
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4. Impact on Carbon: Sequestration 
Potential
ERW scientific research is limited and nascent, with current studies using a wide range of 
material application rates, different calcium- and magnesium-rich materials (e.g., basalt 
rocks or calcium- and magnesium-rich minerals like olivine or wollastonite), different soil 
types, and different, and often incomparable, measurement techniques to estimate the 
impact of ERW on carbon mitigation. As a result, the estimated efficacy of ERW spans a 
wide range depending on the literature and study in question, from essentially no impact,27 
to more than 100 tons of carbon dioxide removed per acre.28 The majority of existing studies 
are numerical models based on the magnesium and calcium content of the materials added, 
assuming their complete dissolution through the chemical reactions in the weathering 
process. The few empirical studies are dominated by small-scale potted plant, mesocosm, 
experiments. Table 1 shows the range of estimated carbon dioxide removal potential of ERW 
based on existing studies, and their method of assessment. 

The material variability highlighted in Table 1, from basalt (common rock type) to 
wollastonite and olivine (specific minerals), is a primary control on the overall potential 
carbon benefits from ERW. These different materials contribute to significantly different 
practical input requirements and risks to farmers. Basalt, for example, is a common mining 
by-product, making its availability and input emissions for mining and grinding negligible. 
Basalt also has a wide range of elements that not only contribute to ERW (e.g., calcium 
and magnesium), but also supply plant micronutrients (e.g., iron, potassium, boron). 
However, that variability in mineralogy also makes basalt less efficient by weight for ERW, 
as it requires the transport and spreading of more material for a given carbon benefit, with 
associated input energy costs and emissions.29 Other more specific minerals, like olivine, 
contain much higher concentrations of ERW elements, but require more specific mining 
and grinding, which constitute additional energy requirements, and thus carbon emissions, 
for ERW inputs. The minerals can also contain higher levels of heavy metals (e.g., nickel, 
chromium) that can be harmful to soil and crop health with accumulation over time.30 
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Table 1. Range of estimated CO2 removal potential of ERW based on existing studies, and 
their method of assessment.

Rate of CO2 
removed 
(ton CO2/ac/yr)

Rock Rate 
(metric ton/
acre)

Paper Description

2.4E-7 1.34E+2 Haque et al., 2020b Mesocosm, wollastonite

0.009-0.02 97 Amann et al., 2020 Mesocosm, dunite

0.3 20 Taylor et al., 2015 Model, basalt

1.3 5.3 Kohler et al., 2010 Model, olivine

1.3 ~1000 Amann et al., 2022 Mesocosm, basalt

1.4 20 Ten Bergie et al., 2012 Mesocosm, olivine

0.8-1.6 40 Kelland et al., 2020 Mesocosm, basalt

2.4  - Manning et al., 2013 Plot, dolerite + compost

2.5  - Strefler et al., 2018 Model, basalt

0.4-4 11 Lefebvre et al., 2019 Model, basalt

0.2-4.4 8 Beerling et al., 2018 Model, basalt

4.5 12 Haque et al., 2019a Model, wollastonite

6 20 Strefler et al., 2018 Model, basalt

7.1 -  Manning et al., 2013 Plot, basalt + compost

22 20 Strefler et al., 2018 Model, dunite

25 20 Kohler et al., 2010 Model, olivine

34  - Washbourne et al., 2015 Plot, construction waste

49  - Strefler et al., 2018 Model, dunite

18-56  - Renforth et al., 2009 Plot, construction waste

118 111 Haque et al., 2019b Mesocosm, wollastonite

Table of quantitative estimates of the rate of carbon sequestration from ERW. Rock type and study type 
are described in the Description column, with Mesocosm referring to small scale (e.g., potted plant in 
greenhouse, soil column in laboratory) experiments, Plot referring to in-field (i.e., outside) trials, and 
Model referring to non-empirical numerical or geographic modelling. All plot trials were performed 
in the UK. The wide range of potential carbon benefits stems from the wide range of materials used, 
material application rates tested, soils in which the materials were applied, and, importantly, variable 
measurement and estimation practices deployed in the different studies.

https://www.frontiersin.org/articles/10.3389/fpls.2020.01012/full
https://doi.org/10.5194/bg-17-103-2020
https://doi.org/10.1038/nclimate2882
https://doi.org/10.1073/pnas.1000545107
https://www.frontiersin.org/articles/10.3389/fclim.2022.849948/full
https://doi.org/10.1371/journal.pone.0042098
https://doi.org/10.1111/gcb.15089
https://doi.org/10.1016/j.ijggc.2013.05.012
https://doi.org/10.1088/1748-9326/aaa9c4
https://doi.org/10.1016/j.jclepro.2019.06.099
https://doi.org/10.1038/s41477-018-0108-y
https://doi.org/10.1021/acsomega.8b02477
https://doi.org/10.1088/1748-9326/aaa9c4
https://doi.org/10.1016/j.ijggc.2013.05.012
https://doi.org/10.1088/1748-9326/aaa9c4
https://doi.org/10.1073/pnas.1000545107
https://doi.org/10.1021/es505476d
https://doi.org/10.1088/1748-9326/aaa9c4
https://doi.org/10.1016/j.apgeochem.2009.05.005
https://doi.org/10.1021/acsomega.8b02477
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While numerical estimates of ERW indicate that upwards of 25 gigatonnes of CO2 could be 
removed each year if ERW were deployed across all global croplands (e.g., global scale extrap-
olation of basalt estimates of Strefler et al., 2018), empirical evidence from controlled trials 
indicate smaller ranges. Research focusing on global croplands estimate removal of up to 
nine gigatonnes of CO2 per year (e.g., Kelland et al., 2020) or less in other natural settings (e.g., 
Buckingham et al., 2022).31 Some estimates (Strefler et al., 2018; Kelland et al., 2020; Figure 2) 
indicate CO2 removal rates by ERW that could lead to between 1.7 and 8.5 gigatonnes of CO2 
removed per year if the technology is deployed across all cropland in India, Latin America and the 
Caribbean (LAC), and Africa (Figure 2).

Figure 2. ERW Carbon Drawdown Potential: Global, India, LAC, and Africa Cropland

The olivine-based estimation model is not used in the Global South potential estimation due to the issues 
with heavy metal contamination discussed earlier. Indian, LAC, and African cropland data and global 
cropland and pasture data are from the History Database of the Global Environment (HYDE). US cropland 
and pasture data are from the U.S. Department of Agriculture’s Major Land Uses in the United States report.

https://doi.org/10.1088/1748-9326/aaa9c4
https://doi.org/10.1111/gcb.15089
https://doi.org/10.1016/j.apgeochem.2022.105482
https://doi.org/10.1088/1748-9326/aaa9c4
https://doi.org/10.1111/gcb.15089
https://cmr.earthdata.nasa.gov/search/concepts/C1214613363-SCIOPS
https://www.ers.usda.gov/data-products/major-land-uses/
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5. Impact on Farmers: Costs and Yields
While low application rates (e.g., tens of pounds per acre) of basalt and other silicate 
rocks are sometimes used in agriculture to add micronutrients to soils, few experiments 
have tested the crop yield effects of high application rates, such as those required for 
ERW (e.g., tons to tens of tons per acre). Some modeling studies have considered optimal 
amendment quantities,32 and in controlled environments, such as “lab pot” studies, the 
effects have been further examined.33 Several studies have shown improvements to soil pH, 
and thus nutrient retention, in Australian soils.34 Positive short-term yield responses from 
basalt have been observed, including for soy and other beans, corn, alfalfa, sorghum, and 
rice, with many showing improved crop yields with certain silicate rock dust applications 
(Table 2).35 Additionally, numerous studies have provided theoretical and empirical evidence 
for improved crop resistance to stress, including metal toxicity and drought, from silica 
additions such as crushed basalt.36 Rice has a particularly long history of amendments, 
similar to those used in ERW, such as industrial wastes (slag) rich in silica, calcium, and 
magnesium, as well as heavy metals. 

While some initial improvements in yield have been recorded, no long-term research is avail-
able for ERW impacts on crop yields. Notably, one study found reduced yield in response to 
high application rates of wollastonite, a mineral used for ERW, indicating potential long-term 
reductions in yield with continued application.37 

Table 2. Demonstrated short-term crop yield increases with various rock weathering 
materials. 

Crop Reference Material Result

Soy
Haque et al., 
2020b

Wollastonite
Improved yield up to 5 wt% amendment, with 
reduced yield at higher application/continued  
application

Alfalfa
Haque et al., 
2020b

Wollastonite
Improved yield to 10 wt%, with reduced yield at 
higher application/continued application

Bean
Haque et al., 
2019b

Wollastonite
Improved biomass at 12.5 wt% amendment 
(did not reach maturity, bean yield not reported)

Corn
Haque et al., 
2019b

Wollastonite
Improved biomass at 12.5 wt% amendment 
(did not reach maturity, grain yield not reported)

Sorghum
Kelland et al., 
2020

Basalt Increased yield at 40 ton/acre application

Rice
Das et al., 
2020

Slag Improved yield at 2 ton/hectare

All of these studies were carried out in greenhouses, albeit greenhouses in different countries: Haque 
et al., 2019b and Haque et al., 2020b in Canada, Das et al., 2020 in South Korea, and Kelland et al., 2020 
in the UK.

https://doi.org/10.3389/fpls.2020.01012
https://doi.org/10.3389/fpls.2020.01012
https://doi.org/10.3389/fpls.2020.01012
https://doi.org/10.3389/fpls.2020.01012
https://doi.org/10.1021/acsomega.8b02477
https://doi.org/10.1021/acsomega.8b02477
https://doi.org/10.1021/acsomega.8b02477
https://doi.org/10.1021/acsomega.8b02477
https://doi.org/10.1111/gcb.15089
https://doi.org/10.1111/gcb.15089
https://doi.org/10.1038/s41598-020-63783-1
https://doi.org/10.1038/s41598-020-63783-1
https://pubs.acs.org/doi/10.1021/acsomega.8b02477
https://pubs.acs.org/doi/10.1021/acsomega.8b02477
https://www.frontiersin.org/articles/10.3389/fpls.2020.01012/full
https://www.nature.com/articles/s41598-020-63783-1
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6. Enabling Conditions for ERW and 
Considerations for the Global South Context
1. Assessment of  soil conditions 

ERW may be most effective for carbon sequestration in tropical regions, like the Global 
South, where soil is acidic, and soils have warmer temperatures and higher moisture content 
than in the Global North. Acidic soils, warmer temperature, and higher moisture all increase 
the rate of basalt weathering, thereby more quickly releasing the elements in basalt that 
drive the carbon sequestration reaction. As those elements enter the soil, they in turn 
increase soil pH, which not only increases nutrient retention but also converts carbon dioxide 
to bicarbonate.38 Determining the soil pH can thus help determine the potential efficacy of 
ERW in a specific location. Other soil characteristics also impact the efficacy of ERW and are 
thus important to measure, including soil moisture and texture.  As weathering is a water-de-
pendent reaction, soil moisture will play a critical role in how fast the basalt can weather, and 
thus how effective ERW will be.39 Soil microbial communities, like fungi and bacteria, have 
also been proposed to either increase or decrease the rate and efficacy of ERW.40 

Determining soil characteristics like pH, moisture, and biology requires soil testing, a process 
wherein samples of soil are extracted from the plot(s) of interest and tested in specialized 
soil testing laboratories. The first step for an effective ERW program is thus to conduct this 
soil testing, at a sufficient scale, to determine the regions within the considered geography 
which are most suited for ERW for carbon drawdown potential, and those for which ERW 
may cause negative impacts, such as for already alkaline soils. Information from this soil 
testing will not only be useful for advancing ERW but can also be used to better guide 
precision agriculture in general, from fertilizer usage to water management. 

Global South Context: Soil testing is especially important in the Global South as evidence 
shows there can be significant differences in soil characteristics, and thus responses to 
agricultural inputs, from plots within the same geographical area.41 This is partly due to the 
diverse cropping systems smallholder farmers practice, often in close proximity spatially 
and temporally42, and partly to the dramatically different ways farmers can manage their 
plots, depending on their perceived returns on investment from that plot. PxD’s experience 
with soil testing in Kenya and India reflects this heterogeneity: results of soil tests across 
various projects showed significantly different soil characteristics across plots in the same 
geographical area. It is thus difficult to generalize from a single soil test; a high intensity of 
testing is required to achieve accurate soil data results.   
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While soil testing is relatively straightforward in high-income countries where the neces-
sary testing infrastructure is readily available (e.g., the network of Cooperative Extension 
System (CES) across the United States), the process becomes much more challenging 
when working with smallholder farmers in the Global South. First, while many Global South 
countries have national soil testing laboratories, these are often operating at or above 
capacity with long delays in processing. While commercial options are also mostly available, 
they can be cost prohibitive.43 Second, with respect to cost, willingness to pay for soil testing 
information amongst smallholder farmers themselves is quite low and their amount is 
much below the cost of the test itself.44 This means any effort to assess soil characteristics 
probably cannot depend on smallholder farmers themselves initiating the testing. Third, 
physical infrastructure linking smallholder farmers to urban centers, where testing laborato-
ries are mostly located, can be quite poor. These poor road conditions complicate efficient 
soil sample extraction and analysis. 

There are some low-cost tests which can provide information to guide opportunities for 
ERW—for example, litmus paper can indicate pH, and hand-held texture tests can indicate 
moisture retention. However, training is required to use and interpret these tests effectively, 
and they still require transport and time, which are additional operational costs.  

Paths to Overcome Global South Challenges: To address the need for soil data in the Global 
South, and recognizing the multiple challenges for any one organization attempting to 
collect such data, there are efforts underway by global scientific and funder communities to 
create detailed maps of soil characteristics across Global South geographies. For example, 
the Bill and Melinda Gates Foundation launched a project in 2021 to appraise the national 
Soil Information Systems (SIS) in multiple countries, including India, Rwanda, Ethiopia, 
and Tanzania.45 This project will also assess and identify ways to improve existing soil 
data initiatives like the World Soil Information Service (WoSIS) soil profile database and 
the Global Soil Information System (GLOSIS), which coordinate global soil data efforts. 
There have also been regionally based efforts to gather soil data, especially using spectral 
soil analysis which assesses soil characteristics with specialized instruments that detect 
the visible, near-infrared and mid-infrared ranges of the electromagnetic spectrum.46 For 
example, the Center for International Forestry Research (CIFOR) and World Agroforestry 
(ICRAF)’s Soil-Plant Spectral Diagnostics Laboratory are working in partnership with the 
African Soil Information Service to generate direct information on soil properties at a level of 
accuracy previously unavailable through the Soils 4 Africa initiative.47 

Advancements have also been made to lower the cost of field-level soil testing technologies. 
For example, Columbia University’s Agriculture and Food Security Center, with support from 
the Alliance for a Green Revolution in Africa (AGRA), developed a highly accurate, portable 
soil testing technology, SoilDoc, which costs about $3 per analysis. The results from 
SoilDoc’s soil samples are sent via SMS to a database in the cloud for rapid analysis by a 
team of soil experts, which could in future be replaced by algorithmic analysis. 

In order to address the soil testing challenges for smallholder farmers, there must be 
continued work both on high level coordination and on technology. Low cost soil testing 
technology can enable a greater scale of soil data collection, while coordination amongst 
research and governmental organizations within specific geographies will allow for system-
atic soil data collection efforts. The ultimate goal is to create regularly updated, accurate 

https://www.nifa.usda.gov/about-nifa/how-we-work/extension/cooperative-extension-system
https://www.nifa.usda.gov/about-nifa/how-we-work/extension/cooperative-extension-system
https://www.cabi.org/news-article/new-project-aims-to-review-and-help-strengthen-national-soil-information-systems/
https://www.isric.org/explore/wosis
https://www.fao.org/global-soil-partnership/areas-of-work/soil-information-and-data/en/
https://www.soils4africa-h2020.eu/the-project
http://agriculture.columbia.edu/projects/agriculture/soildoc/
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soil databases with detailed data from a selection of representative plots at sufficient 
density across a region.48 This will allow any organization or company that relies on soil 
testing data to leapfrog this logistical challenge and focus on innovation, like establishing 
ERW in a new geography. 

2. Access to powdered basalt, potentially as a mining 
by-product 

ERW requires the use of finely ground silicate rocks like basalts, or other minerals like olivine 
and wollastonite. Of these silicate rocks, basalt is the most prevalent as a material and has 
other elements to improve micronutrient composition in soils. Basalt is also more likely 
than the other silicate rocks to exist as an industrial by-product; for many mining operations, 
finely-ground basalt is a by-product that could be leveraged for ERW to reduce input costs 
and emissions.49 Creating a market for basalt and an industry for basalt mining may also 
support local income generation, and transition local communities from coal mining 
dependency.50 

The composition and grain size of the basalt will influence the speed and efficacy of ERW 
for carbon drawdown. Higher calcium and magnesium content, i.e., Ca2+ and Mg2+, in the 
basalt composition will drive more carbon dioxide sequestration, and a grain size of smaller 
than 100 microns (μm) is preferable.51 However, rock grinding contributes to the energy 
requirement and related carbon dioxide emissions of ERW overall,52 and transporting and 
spreading grain sized below 50 μm can contribute to practical and health difficulties because 
of air-borne dust.53 

Ground basalt is increasingly available commercially for soil amendments around the world; 
it was available in Queensland, Australia as early as the 2000s.54 However, depending on the 
availability of the source, the cost of the ground basalt will vary widely.55 

Global South Context: Powdered basalt would be a new agricultural input for almost all 
smallholder farmers in the Global South. Although there have been a few discussions of 
obtaining basalt in low- and middle-income countries as a by-product of rock crushing opera-
tions and industrial mineral mining operations,56 there has been no systematic research into 
developing the needed supply chain, from identifying basalt sources, to developing potential 
mining operations, to determining the ultimate price of basalt for farmers. This latter point 
is key as smallholder farmers are extremely risk averse,57 which can pose large barriers to 
adoption of new technologies which require investment on their part. Supply chain develop-
ment for ERW is further complicated because basalt composition varies geographically, so 
not all basalt will contain the equivalent amount of ERW-driving elements like calcium and 
magnesium, and will require further site-specific consideration in assessing the efficacy of 
ERW. Of note, while most Global South countries have not been the focus of existing ERW 
research, large geological deposits of basalt and other rocks suitable for ERW have been 
identified in East Africa, and Central America, as well as India, which hosts one of the largest 
deposits of basalts on the Deccan Plateau.  

Paths to Overcome Global South Challenges:  Commercial scale basalt distribution for 
agriculture does exist in the United States, both at small volumes and from mining operations 
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in large volumes. To advance ERW in the Global South, due diligence must be done to create 
such a market for powdered basalt, from sourcing to distribution to marketing to financing, 
amongst other market considerations. This process can be especially challenging in 
emerging economies due to the high level of information asymmetry, as well as transaction 
costs, between the various stakeholders in the input supply chain. In the smallholder farmer 
context, one model which has shown promise for increasing the adoption of new technology, 
i.e., improved seed varieties,58 is working through the small and medium enterprises (SMEs) 
which populate the input supply chain. These entities, like agro-dealers, are often the farmer’s 
first point of contact with the market and, in addition to their official business roles, can 
provide valuable informal services, i.e., credit provision and knowledge sharing.59 Creating 
a service economy for basalt, which specifically creates opportunities for these SMEs to 
participate in, can thus be an impactful lever for its successful distribution. This could involve 
developing a marketing plan which incorporates an education and outreach component for 
the agro-dealers who are the primary input suppliers to smallholder farmers and also play an 
important information-sharing role about the various farm inputs available.60  

3. Transportation of powdered basalt to 
agricultural lands 

Research in Austria shows that, depending on the distance from the mine to the farm and 
the mode of transportation used (rail vs. road), transporting <100 μm basalt may cancel 
out carbon dioxide sequestration benefits.61 This is partially because the application rate of 
basalt, if maximizing carbon dioxide removal, for ERW is very high – many tons/acre – so 
a large volume of basalt delivery is needed. This type of delivery requires specific trucks, 
personnel trained in driving those trucks, transportation infrastructure (roads and bridges 
capable of holding 20-ton capacity dump trucks), and fuel. Accordingly, the research 
suggests basalt powder is best sourced from mining industries near the application sites.62 

Global South Context: Smallholder farmers often work on small plot sizes, usually less 
than 10 hectares63 and sometimes as small as two hectares or below,64 located in remote 
areas far from economic and industrial centers. This means the total amount of basalt they 
might need on their farms for ERW will be much less than on commercial farms. However, 
the application rate of basalt for ERW is still much higher than for other soil amendments. 
The corresponding transportation and storage costs required by ERW amendments may 
be prohibitively expensive for smallholders, and may decrease their likelihood of adopting 
the technology. However, lowering application rates of basalt would proportionately reduce 
the efficacy of ERW. Another transportation consideration is the emissions generated to 
transport basalt to smallholders, i.e., transporting the input from supplier to hub agro-dealer, 
from hub agro-dealer to retail agro-dealer, and ultimately to the farmer. As mentioned above, 
depending on the distance from the source and the mode of transportation, those emissions 
may outweigh the carbon sequestration benefits.

Paths to Overcome Global South Challenges: Access to basalt for Global South farms will 
require network and infrastructure optimization. Transport of material from mine to farmer 
must be optimized to avoid emissions, and infrastructure (e.g., roads and bridges) must have 
the capacity to support the transport of a high volume of geologic material (i.e., many tons 
of powdered basalt) where this capacity had not previously been necessary. Farms in close 
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proximity to basalt mines should be a priority in testing the adoption of ERW in Global South 
communities—these early adoptions could be funded as philanthropic grants, accompanied 
by external scientific partnerships to assess feasibility more broadly. Additionally, the 
scientific community is still developing frameworks and best practices for performing ERW 
for carbon benefits, as the environmental and geologic variability of ERW hinders a simple 
prescriptive methodology for spreading a known volume of basalt for a known carbon 
sequestration volume. 

4. Availability of labor and machinery to apply 
powdered basalt to land

For carbon benefits, several tons of basalt must be applied per acre, with the exact rate 
dependent on the concentration of calcium and magnesium in the rock material, as 
well as the desired carbon dioxide-removal potential. For agronomic applications, i.e., 
as a micronutrient amendment, applications are as low as 50 pounds per acre.65 Some 
researchers have used aircraft to spread the ERW materials over large areas,66 although, 
given considerations of moisture availability, runoff potential, water saturation, and safety, 
most studies have incorporated rock dust into the soil, such as with tillage.67 The tradeoff 
between surface application, which accords with recommended practices like no- or 
reduced-till to improve soil organic matter, versus in-soil incorporation of basalt to increase 
ERW efficacy is a topic for further scientific investigation.  

Global South Context: Labor and access to labor saving technologies, i.e., agricultural 
machinery, is a major production constraint for smallholder farmers.68 The labor intensity of 
basalt application and its dependence on machinery may thus be a significant barrier to ERW 
adoption, as has been found for fertilizer application in smallholder contexts.69 Even access 
to basic tools, like a shovel, cannot be assumed for all smallholders. Women in particular 
often operate with the least resources and have additional demands on their labor, as they 
are usually responsible for many household management tasks like cooking and cleaning, as 
well as childcare. 70

Paths to Overcome Global South Challenges: Because field trials of ERW in scientific 
settings are rare and in early stages, there are not yet universally accepted guidelines 
for practicing ERW. Table 1 shows the wide range of material application rates studied; 
questions remain around the economic and carbon cost-benefit analysis of rock rates and 
associated transportation. Most studies incorporate the material into the soil, though depths 
vary widely. While scientific studies to date have focused on variable maxima for crop and 
carbon performance in different rock application rates,71 future studies could instead focus 
on optimizing for cost in Global South contexts, where available labor, equipment, and crop 
outcomes are leveraged for maximum carbon and crop benefits using ERW. In addition, for 
technologies for climate mitigation, if the social and environmental benefits are larger than 
private benefits to farmers like increased profits, then there is a strong economic case for 
compensating farmers for their environmental services and covering associated costs of 
implementation. Emerging evidence shows policy levers like payments for environmental 
services (PES) can motivate change in farmers’ behavior as well as continuation of those 
behavior changes, for example, in adopting sustainable land-use practices to conserve 
watershed ecosystems.72 It is critical to develop the necessary infrastructure for successful 
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PES program implementation, for example, by determining the appropriate payment amount 
and securing land tenure, as well as by building the evidence base for this market-based 
approach in addressing negative environmental externalities of human behavior.73 Such 
research and development should be a priority for assessing the viability of ERW in Global 
South contexts. 

 

5. Measurement and verification of carbon 
sequestration after ERW application 

The current measurement method of carbon sequestration through ERW is direct chemical 
analysis of soil carbonate minerals and soil water chemistry. This measurement method 
requires hands-on sampling and complex chemical analyses, but the scientific community 
recognizes the need to streamline monitoring so the technology can scale, and is thus 
working on developing other methods to track efficacy. Two of these emerging measure-
ment methods are: 

(1) Using in situ soil chemistry sensor technology (e.g., electrical conductivity) to 
measure changes in the chemistry of soil water in response to ERW. Electrical 
conductivity has been shown to be related to the alkalinity (e.g., from bicar-
bonate and carbonate ions—the outputs of the ERW chemical process) of water, 
though more work is needed to leverage this relationship for a straightforward 
measurement.74 

(2) Modeling approaches to estimate soil carbon sequestration potential based on 
local conditions and basalt characteristics.75 

Both methods are nascent and lack field validation. There is currently no standardized or 
universally accepted method for verification of the amount of carbon dioxide mitigated, 
although methods entail some combination of “life-cycle assessment” of the total input 
carbon dioxide emissions (i.e., from rock grinding, transportation, and spreading) and in-field 
measurements of carbon sequestration (either of the actual change in carbon dioxide, bicar-
bonates and carbonates, or in some proxy related to those compounds). Verification of the 
realized carbon sequestration will probably be required, as offset purchasers increasingly 
require higher confidence in nature-based carbon removal practices.76 

Global South Context: There is a significant knowledge gap and lack of consensus on 
measuring and verifying the efficacy of ERW in general, but especially for the Global South 
where little to no testing has been done. Technological approaches are needed for reliable 
verification, but their high cost is a barrier for implementation across smallholder farmer 
geographies. Lower-cost soil chemistry sensor technology (i.e., electrical conductivity) may 
provide opportunities for measurement-based verification, though that technology is still 
being refined and studied. Additional innovations in the measurement field for ERW will be 
required in order to allow for measurement at scale in the Global South smallholder farmer 
context.77 

Paths to Overcome Global South Challenges: Increased field deployment across settings, 
and advanced technological approaches to in-field measurements, will accelerate the 
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reliability and consensus of ERW verification. In addition, although no carbon offset registry 
methodology currently exists for ERW, such methodologies are being developed to provide 
guidance to farmers and land managers in deploying ERW for revenue through carbon 
offsets, although the validity and appeal of these methodologies for offset purchasers have 
yet to be demonstrated.78 Measurement and verification standardization will stimulate more 
widespread access to carbon market rewards, as well as prioritize the low cost, scalable 
measurement technologies which will support adoption of ERW in the Global South.  
Increasingly, carbon offset purchasers are requiring measurement-based verification for 
carbon removal offset, as other nature-based carbon removal projects verified with models 
alone are increasingly scrutinized and losing value.79 Technology innovation and deployment 
strategies that specifically empower Global South smallholder farmers to take measurements 
and transmit measurement data, will create a sustainable framework for converting ERW 
practices into high-quality offsets for high-value trade. 

7. Pathways to Scale ERW
Carbon offset payments to farmers for deploying ERW may be an opportunity to scale its use 
by providing an incentive for its application and would also help to diversify farm revenue 
streams in the future. Currently, however, carbon offset market opportunities are not widely 
available for ERW, given the uncertainties around its monitoring, verification, and efficacy. The 
majority of carbon offsets are through governance bodies, called “registries,” that oversee the 
implementation, verification, and trading of offsets by those performing the carbon dioxide 
removal practice and those purchasing the offsets. Offset registries require the technology 
or practice that offsets emissions, or removes carbon dioxide from the atmosphere, to be 
well understood to ensure it is performed with some regularity across geographies and times, 
and that the climate benefits accrue. “Methodologies” are the registry-prescribed protocol for 
implementing offset practices, generally developed and reviewed by some knowledgeable 
scientific body, although exact practices vary across registries. Currently one registry, Verra, 
is assembling such a review body for its first receipt of methodology proposals for ERW, and 
another new registry, Puro.earth, has created a draft methodology. Once approved, there 
may be an opportunity for farmers and other land managers (termed “project developers”) to 
apply to perform under the new methodology to receive offset payments. Depending on how 
methodologies develop, farmers and land managers in Global South countries may be able to 
participate. University and private research is ongoing to generate more data from field-based 
ERW trials, and could be directed towards testing ERW in Global South countries. 

8. ERW Opportunities in the Global South
The science behind ERW is nascent, and the specific outcomes of ERW80 will depend on rock 
type, amount of rock applied, soil type, climate, and crop and plant type, as well as the ability 
to measure and monitor the impacts of EWR on atmospheric carbon dioxide.81 Furthermore, 
the geological,82 infrastructural, material, and technological requirements to facilitate the 
mining,83 crushing,84 transporting,85 spreading, and tilling of silicate rocks for ERW need 
significant investments to be realized in Global South geographies. Still, as the global commu-
nity seeks opportunities for improved food security, climate solutions, and sustainable 
development, ERW may be an attractive technology with wide ranging benefits and economic 
opportunities. To advance the positive outcomes of ERW for benefits in the Global South, 

https://verra.org/
https://puro.earth/puro-standard-carbon-removal-credits/
https://puro.earth/articles/enhanced-rock-weathering-in-soil-methodology-public-consulta-788
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increased studies of ERW in Global South-specific conditions, robust scientific monitoring, 
technological innovations, investments, and more stable carbon market incentives will be 
needed. 

9. Research Needs to Ensure ERW is Safe 
and Effective 
As stated, there is little scientific literature supporting ERW-application success in Global 
South geographies, nor success on farmer outcomes, like yield, for smallholder farmers. One 
model of the potential climate benefits by country suggests removal of between 0.25 and 
1.1 gigatons of carbon dioxide per year if ERW were deployed across all agricultural land in 
India,86 but the theoretical estimates used have not been corroborated by field trials there. 
Aside from climate impact, evidence for short-term crop yield increases in Global South 
geographies, as have been observed elsewhere, has yet to be obtained. 

In existing ERW research, the cost of application also varies depending on the region of 
interest, the exact rock materials used, and the emphasized purpose of application (for 
carbon drawdown or agronomic outcomes like soil health and yields). Farmers and land 
managers thus may choose to find a balance between improved crop yield and carbon 
benefits. For example, some studies indicate that, at application rates for maximum carbon 
sequestration, crop yields suffer.87 From the smallholder farmer perspective, any negative 
impact on farmer outcomes, like yield, will outweigh any external climate benefits. Additional 
research is thus needed to accumulate robust evidence on the impact of ERW on farmers in 
Global South countries, and the most appropriate ways to implement ERW in a smallholder 
farmer plot, considering the farmer’s priorities. 

This research should include investigations of:

 • Crop level outcomes – What is the effect of ERW on yields, particularly of the crops 
important to smallholder farmer livelihoods, considering the soils, climate, and geology of 
Global South farms? What is the precise dosage of basalt needed to maximize the carbon 
sequestration potential and to minimize any negative effect on the yield of the crops of 
smallholder farms in Global South countries?

 • Application – What is the appropriate application technique for basalt on the types of 
soils smallholder farmers are likely to work on?

 • Labor and machinery requirements – What labor and machinery needs must be met to 
correctly implement ERW at the plot level?

 • Basalt cost – What is the commercially sustainable price of basalt in different geogra-
phies, and, at that commercially sustainable price, does ERW increase profit for farmers 
without  entailing additional payments? Are there heterogeneities in who these profit 
increases or decreases accrue to? 

It is important to note that research addressing the above questions should be conducted 
for each potential region for ERW application in the Global South, as contextual elements 
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like the type of soils, market dynamics, and key value chains will differ significantly across 
geographies.  

Another area of uncertainty in ERW is the potential risk of soil contamination by heavy 
metal content in many calcium- and magnesium-rich rocks, which are necessary for the 
ERW process.88 This risk could be mitigated by the choice of rock material. Many basalts 
contain lower concentrations of such metals compared to other calcium- and magne-
sium-rich minerals like olivine, although continued application at high rates may still lead 
to soil contamination. More work is needed to better understand the relationship between 
silica, potential heavy metal contamination, long-term impacts of basalt application, and 
crop yields, in order to appropriately mitigate potential risks to crop nutrient uptake and 
resulting human consumption. For example, in Puro.earth’s draft methodology for enhanced 
weathering carbon projects, assessing heavy metal contamination is a key step in their 
environmental and social safeguards. 

To understand and mitigate this heavy metal risk, more scientific investigations are 
needed to:

 • Identify the potential basalt sources in each prospective geography and conduct testing 
of their total elemental composition. Test results will indicate the sources’ amounts of ERW 
elements (e.g., calcium and magnesium) for carbon benefits, plant micronutrients for crop 
impacts, and heavy metal content for the risk of toxicity. 

 • Test the effects of the identified basalt in local geographies to understand the impacts 
on crop yields and soil contamination and crop yields.

 • Through the experimentation listed above, create standards for basalt rock to be used 
in ERW.

These actions will constitute a substantial undertaking by the scientific community, as the 
high degree of geological heterogeneity means an accompanying high level of testing. Such 
work, however, is necessary in order to ensure ERW is a safe technology for those who 
implement it, as well as for all of us who consume agricultural products affected by it. 

In summary, a number of fundamental questions must be addressed to assess the safety, 
efficacy, and feasibility of deploying ERW in the Global South. These questions are related 
to safety, likely benefits to the farmer, carbon removal efficacy, and economic and logistical 
feasibility. 

Safety: The key considerations regarding safety involve the potential to release metal 
contaminants into soil, and the potential for inhalation of fine powdered rock, which is 
dependent on frequency of exposure.89

Heavy metal accumulation in soils can lead to uptake by plants and subsequent consump-
tion by people, causing a range of health effects.90 Global soils are already increasingly 
contaminated with heavy metals, from both changing agricultural practices and atmospheric 
deposition. Remediation of soils with excess heavy metal concentrations is itself an ongoing 
field of science with no clear solutions. Mitigating the risk of heavy metal contamination will 
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require sourcing materials with lower heavy metal content and ensuring that soils used for 
ERW do not already contain high levels of heavy metals.

Remobilization of powdered rock by wind can cause fine silicate particles to be inhaled 
during their application for ERW, particularly at high application rates. Wearing cloth masks 
and eye-wear is common practice for researchers facilitating ERW studies in the USA 
and Europe, but the availability of safety equipment and adherence to these protocols in 
the smallholder farming context are much more uncertain. Furthermore, once rock dust 
is applied to the surface, wind can pick up and transport the dust and create dust clouds 
that are hazardous to the people exposed to them. Incorporating the material into the soil 
reduces the risk of wind remobilizing rock dust after application.

Likely benefits to the farmer: Additional research is needed to understand the immediate 
and long-term impacts of silicate rocks used for ERW, on soil health and plant productivity, 
and particularly for Global South geographies of interest, as impacts will depend on soil 
conditions, source material characteristics, and crop types. Improved low-cost methods 
for assessing soil characteristics, as well as field testing in a range of conditions relevant 
to Global South communities, will facilitate the optimization of any benefits from ERW for 
farmers. 

Carbon sequestration potential and MRV (measurement, reporting, and verification): 
Similar to productivity benefits, the efficacy of ERW for carbon sequestration will depend on 
soil conditions, source material characteristics, and the amount and size of material applied.  
Scientific and technological developments are also needed for measuring and verifying 
carbon sequestration through ERW, as well as for the creation of carbon registry methodolo-
gies that could enable economic incentives for carbon sequestration through ERW.

Feasibility: Economic and logistical feasibility is a function of access to material (e.g., 
distance, transportation infrastructure), farm conditions (e.g., equipment availability, 
soil characteristics, labor), and market incentives (e.g., carbon offset availability for 
smallholder-scale ERW). To address these parameters, it is necessary to create investments, 
policies, and market incentives that incorporate the source of ERW materials and the 
relevant infrastructure needs, from machinery and transport to the knowledge and labor 
needed for successful ERW application.

10. Pathways to an ERW Future in the 
Global South
ERW is already being advanced in the Global North, with research trials targeting soil, crops, 
and climates in the United States, Canada, and Europe. The future economic benefits of ERW 
for farmers from carbon offsets will then disproportionately go to Global North farms where 
research and development has been focused. This is despite many tropical and Global South 
countries in theory having more ideal conditions for ERW—warmer, wetter, and more acidic 
soils for more rapid rock weathering than the Global North. But the specific risks, potential 
benefits, and logistics of implementing ERW in Global South communities require concerted 
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study, research, market development, network building, and investment that are specific to the 
context of those communities. Necessary steps are:

 • assessment of geological material availability to support ERW in Global South countries, 
as well as assessment of each country’s environmental suitability for the weathering process,

 • assessment of infrastructural capacity and needs to support ERW in Global South 
countries,

 • field trials that monitor soil health, crop nutrient density and productivity, and soil 
inorganic- and organic-carbon impacts in Global South countries, and

 • technological development of field measurement techniques to better understand soil 
conditions and monitor ERW in Global South countries.

These actions need to be developed in concert with scientists, policymakers, development 
organizations, as well as ground-level communities and farmers of the Global South. The 
people who will ultimately be the ones implementing ERW technology in their geographies 
will have key insight into their specific contextual challenges and ways to overcome those 
challenges. Including the perspective of local communities at the outset, beginning with 
the research and design phases, is imperative to assess ERW’s potential success in the 
Global South. 
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90 Alengebawy A., Abdelkhalek S. T., Qureshi S. R., & Wang M., (2021) Heavy Metals and Pesticides 
Toxicity in Agricultural Soil and Plants: Ecological Risks and Human Health Implications, Toxics 9, 42 
1–33, 23 (“Heavy metals and pesticides cause deleterious implications for human health. Different 
body organs can be affected along with body systems. Heavy metals toxicity causes serious 
problems for children and adults by ingestion, inhalation, and dermal adsorption. The harmful health 
implications of heavy metals can be concluded as neurodegenerative disorders, musculoskeletal 
diseases, and reproductive hormonal imbalance.”). 
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