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Abstract

Information and Communication Technology is increasingly used to deliver customized

information in developing countries. We examine whether individually targeting timing of

automated voice calls increases engagement in an agricultural advisory service. We design,

estimate, and evaluate a novel recommendation system that customizes contact times to

individual characteristics. This generates significant gains, up to an 8% increase over the

baseline pickup rate of 0.31. However, our on-policy estimated gains are lower than predicted

by off-policy analysis. We show accounting for evolution of user preferences over time in

off-policy estimation improves performance. We also demonstrate how this approach can be

used to target vulnerable populations, and introduce a technique to quantify equity-efficiency

trade-offs, and measure the social cost of resource constraints.
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1 Introduction

Technology-enabled interventions can improve people’s access to useful information, thereby

increasing welfare and reducing inequality. The benefits of automated delivery of infor-

mation have been shown in various sectors, such as public health, education, labor, and

agriculture.1 Information delivery through mobile phones may hold particular promise in

developing-country settings, where access to the internet is still limited2, and information

barriers can be severe.

Automated delivery further enables the customization of both the content and the

schedule for delivery. In this paper, we study a particular form of customization — the

scheduling of delivery of information at a convenient time for the recipient — in the context

of an agricultural advisory service in India that serves over one million farmers.3 The service

delivers weekly information to farmers via prerecorded telephone calls; the information is

customized to the farmer’s activities (e.g., geography, land type, seed variety, planting

method) at a specific point in the growing season.

This project develops, implements, and evaluates a program that targets call times to

farmers based on their observable characteristics and history of interaction with the service.

Our primary outcome for farmer engagement is binary pickup when push calls are made by

the service. We find substantial scope for gains from customization, with an 8% (Std. Err.

= 0.94%) improvement in user engagement from a baseline of 31 percentage points (pp)

relative to a non-optimized policy. If we were to implement the policy on the entire user

base of 1.3 million farmers, this would translate to additional engagement for approximately

34,000 farmers (over the baseline non-optimized policy) with the service each week.

Our approach also allows us to identify efficiency-equity trade-offs in implementing

targeted policies, and we show that a small sacrifice in overall expected outcomes can yield

a significant increase in gender equity. The task at hand is to find the “best call time” for

every farmer. This is a constrained optimization problem as there are technological limits

on the number of calls that can be sent each hour from the service platform. Our setup

involves 91 such hour-day combinations that comprise the treatment arms. By modifying

welfare weights associated with subgroups, we can optimally allocate high-engagement slots

1The benefits of automated delivery are demonstrated in public health (Araya et al., 2021; Berman and
Fenaughty, 2005; Ekeland et al., 2010; Knight et al., 2021; Lee et al., 2021; Voss et al., 2019), education
(Agrawal et al., 2022; Hoxby, 2014; Rodriguez-Segura, 2022), labor (Dammert et al., 2013, 2015), and
agriculture (Cole and Fernando, 2021; Fabregas et al., 2019).

2While the share of mobile cellular subscriptions reached above 90%, the percentage of population that
use internet was still below 40% in lower- and middle-income countries in 2017 (Spielman et al., 2021).

3The advisory service served 1.3 million farmers at the time of this study, while its user base has grown
over time. As of 2024, approximately 6.8 million farmers are registered with this service.
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to targeted populations. For example, the gap between male and female engagement in the

baseline is 3pp. We estimate targeted policies that can help reduce the gender engagement

gap by 2.4pp (Std. Err. = 0.98pp, 80% reduction over the baseline difference) and quantify

the “cost” of doing so in terms of the reduction in the total number of farmers reached.

We similarly show the value of targeting based on a proxy of need, focusing on farmers

who lack smartphones (Giulivi et al., 2023; Ma et al., 2023). We develop and evaluate

targeted policies that can preferentially allocate the farmers without access to smartphones

to the high engagement call times using a welfare function that values the non-smartphone

users 10 times relative to the smartphone users. This exercise helps clarify the potential

benefits of investing in additional technological capacity, by identifying how many more

non-smartphone and smartphone users could be reached.

These increased engagements with digital advisory service are the first crucial step in

increasing farmers’ knowledge and adoption of agriculture practices, which are the neces-

sary conditions for enhancing agricultural productivity and livelihood. The importance of

improving and retaining user engagement is critical for the success of digital interventions.

This aspect has been studied in several domains such as marketing (Bruce et al., 2017;

Hitsch et al., 2024; Yang et al., 2023; Yoganarasimhan et al., 2023), public health (Liu

et al., 2023; Sadish et al., 2021; Yardley et al., 2016) and financial education (Blanco et al.,

2023).

Digital advisory services have the ability to overcome the shortcomings of traditional

in-person extension services and reach previously unconnected rural households with timely

and customized information at low cost. While the efficacy of any particular program will

depend on numerous factors (Abate et al., 2023; Spielman et al., 2021), such as the specific

information gaps faced by farmers, the quality and relevance of information, and the infor-

mation delivery timing and methods, a growing body of evidence finds such mobile services

can improve agricultural practices, productivity, and profits (Arouna et al., 2020; Casaburi

et al., 2019; Fabregas et al., 2019; Larochelle et al., 2019). In the Indian context, the value

of information has been well documented in many areas, such as providing smallholder

farmers with information on modern inputs and practices, weather forecasts, and output

prices (Baul et al., 2024; Burlig et al., 2024; Cole and Fernando, 2021; Fernando, 2021;

Giné et al., 2008; Jensen, 2007; Mitra et al., 2018). In all cases, reaching the farmer is an

important and necessary first step.

Prior to our engagement with the NGO, calls were spread roughly across the week to

manage limits on the number of calls that can be made by the platform in an hour. During

that time, no efforts were made to match call times to user preferences or availability. In
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collaboration with the NGO, we changed the “default” policy from a purely ad hoc one

to a purely random “uniform policy” in which users were assigned randomly with equal

probability to each of the 91 potential calling times (treatment arms) within the week.

This modification in the default policy is a straightforward change that requires minimal

cost, effort, and no disruption for the platform. However, the uniform randomization of

call times rules out any selection in assignment to different treatment arms and ensures

equal representation of all farmer types across the 91 treatment arms.

This engagement data collected using uniform randomization helps to estimate the

average treatment effect of different call times without any selection bias. The average

engagement in the morning and evening hours is 1.3 pp (Std. Err. = 0.069 pp) and 1.8 pp

(Std. Err. = 0.069 pp), respectively, higher than the afternoon hours. Moreover, we find

high engagement hours during the weekends, which were far less used historically by the

NGO to call farmers.4

We used data from the outcome of this “uniform randomization” to train a machine

learning model, with the goal of maximizing user engagement while obeying bandwidth

constraints, resulting in an “estimated optimal policy.” Next, we conducted a prospective

randomized evaluation, which compares the estimated optimal policy against the uniform

policy by randomly assigning farmers to either their predicted optimal time (the targeted

policy) or a time at random (the uniform policy). Using the data collected from these two

policies allowed us to conduct two distinct types of evaluations. First, we conducted “on-

policy” evaluations: since farmers were randomly assigned (as part of real-world service

operations) to two groups, where one group received the targeted policy and the other the

uniform policy, we were able to estimate the treatment effect of the targeted policy by com-

paring the sample mean of outcomes from the two groups of users. Second, we conducted

“off-policy” evaluations, where we estimated the counterfactual benefits of alternative poli-

cies (policies mapping farmer characteristics to call times) that were not used in practice.

Our off-policy evaluations took advantage of the fact that millions of calls were randomly

assigned to call times under the uniform policy. However, for both the “off-policy” and

“on-policy” evaluations, separate data sets were used for policy estimation and evaluation

so that the benefits of the targeted policy are not overstated. Particularly, the off-policy

evaluations are different from in-sample prediction, as we used cross-fitting in our off-policy

evaluation. Cross-fitting splits the data into multiple folds and uses separate data sets for

the estimation of targeted policy and evaluation of the benefits of the targeted policy (see

4Appendix Table A1 shows the distribution of calls across 91 hour-day call times historically under
default ad hoc policy. The graphs show that a smaller proportion of calls were made during the weekend
even though the service operated all 7 days of the week.
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Section 6.1 for details).

We repeated the process of estimating optimal policies based on previous data and

then implementing them in a randomized evaluation several times, each time updating the

estimated optimal policy using the most recent data. We also provide new evidence on the

reliability of off-policy estimates by comparing the gains estimated from off-policy estimates

obtained at the point of policy design (using data until time t but with cross-fitting) to

actual gains that resulted from on-policy evaluation in future weeks after time t.5 This

analysis highlights the extent to which changes in user behavior (driven, for example, by

changes in preferences, circumstance, or other shocks) created differences between on- and

off-policy estimates. Our off-policy estimates were 2.6pp (Std. Err. = 0.28pp) over the

uniform policy group, but the on-policy estimates on future weeks were only 0.4pp (Std.

Err. = 0.10pp).

The developing-country setting where we implemented our interventions introduced

significant challenges, requiring us to use novel approaches to develop and evaluate recom-

mendation systems.

First, the mission of the NGO with which we partnered is to improve the lives of the

very poor. All of their communication occurs via telephone, both because many farmers

have limited literacy and because few have access to the Internet. Although the user

base of 1-1.3 million farmers is large relative to many economic field experiments, it is

small relative to settings where recommendation systems, such as large online shopping

platforms or popular apps, have been employed in practice. Relative to settings where

policy estimation and evaluation have typically been rigorously analyzed, which usually

involve a handful of treatment arms, our setting with many treatment arms (possible call

times) introduces additional challenges. We demonstrate the benefit of deploying policies

rather than using historical data for off-policy evaluation; even with a million users, on-

policy evaluations have substantially more statistical power than off-policy evaluations due

to the large number of treatment arms.

Second, because the agricultural advisory service, which is run in partnership between a

nonprofit organization and the government, has significant bandwidth constraints, unable

to call more than 70,000 farmers in any given hour, the development of targeted treatment

assignment policies requires complex optimization, as an unconstrained algorithm would

seek to schedule more than 70,000 farmers on high engagement hours.6 This further intro-

5Cross-fitting refers to splitting the sample into K folds where a separate estimation is done for farmers
in each fold using the data from remaining folds excluding the fold to which farmer i belongs. Moreover,
estimated model parameters for every fold are saved and used as an input into policy evaluation.

6Note that there were 1.3 million total farmers in the sample at the time of the survey for whom calls
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duces the possibility of trade-offs between equity and efficiency when determining whether

to allocate high-engagement, scarce time slots to vulnerable groups. Our approach allows us

to quantify the magnitude of these trade-offs for vulnerable groups such as female farmers

or non-smartphone users.

Third, agriculture is a seasonal undertaking, and farmer behavior (or technology) may

be subject to time-varying shocks; this can degrade the performance of recommendation

systems in future weeks. We suggest two approaches to mitigate this cost using off-policy

evaluations. First, we show that placing greater weight on more recent data than equally

weighting training samples from a longer time series yields substantial gains. Modifying

the weights of the training sample by proximity between the training and test sample

shows gains in engagement between 2.0pp (Std. Err. = 0.59pp) and 2.7pp (Std. Err. =

0.49pp) on future weeks of data when we implement a targeted policy instead of uniform

randomization. Second, the call center did two follow-up calls if the farmer did not pick

up the call on the previous attempt. When we implemented the estimated optimal policies

in practice, we only customized the time of the first attempt. In the presence of shocks,

the first call time might fail, but we show using off-policy evaluation that if the advisory

delivery system can potentially customize the time of the follow-up calls, further gains

are possible. Additionally, we document using the follow-up calls on the “on-policy” that

improvement in overall pickup is 0.8pp (Std. Err. = 0.10pp), which is twice the effect we

see on the first call pickup. This supports the finding that follow-up calls can be used to

improve the performance of targeted policies in the presence of shocks.

Although this paper evaluates the value of personalized policies in terms of an impor-

tant, “advisory content delivered,” given the short time frame of the experiment, we were

not able to assess the gains on downstream outcomes such as agricultural yields and farmer

adoption of recommended practices. Nevertheless, a rigorous impact evaluation conducted

on this digital advisory service shows that providing farmers with the advisory service, on

average, increases their agricultural knowledge and adoption by 0.1 standard deviations,

raises productivity by 1.74% and total production by 4.12%, and reduces their likelihood

of experiencing severe rice crop loss by 10% (Cole et al., 2024). Impacts are larger among

farmers who are more engaged with the service. Moreover, a canonical meta-analysis com-

putes that digital interventions in agriculture and increased access to information have

improved downstream outcomes such as agricultural yields by 4% (Fabregas et al., 2019).

had to be scheduled for at least 2 to 3 messages each week of the experiment. Additionally, each farmer
gets 2 follow-up calls if they fail to pickup the call in the first attempt.
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2 Related Literature

Several previous studies have used historical data, either experimental or observational, to

estimate personalized (targeted) treatment assignment policies and evaluate the counter-

factual benefits of implementing them. An early paper in this literature is Ascarza (2018),

which applies machine learning methods to data from a randomized experiment to com-

pare the performance of two alternative approaches to targeting. A traditional approach

to targeting (often used in the absence of data from randomized experiments) prioritizes

individuals for treatment based on the predicted baseline value of the outcome of interest,

in this case, customer churn. Ascarza (2018) quantifies the benefits of targeting instead

based on individual-level estimates of treatment effects derived from experimental data.

Other papers that compare targeting based on estimated treatment effects to alternative

targeting rules such as targeting based on predicted baseline outcomes include Athey et al.

(2023b) in the context of text-message nudges to students filling out financial aid forms,

Devriendt et al. (2021) in marketing, Inoue et al. (2023) in health, Olaya et al. (2020) in

education, and Haushofer et al. (2022) for a cash transfer program in a developing country

setting.

In addition to the above papers, several recent papers have focused on prioritization

by treatment effects and evaluated the benefits of personalization counterfactually. For

instance, Yoganarasimhan et al. (2023) uses data from a randomized experiment to estimate

personalized policies using off-policy evaluation methods in an application designed to

determine the optimal trial period to offer customers a software service. Similarly, Hitsch

et al. (2024) uses data from randomized experiments to compare different targeting policies

for catalog mailing. Yang et al. (2023) moves beyond targeting short-run outcomes and

develops new methods to design and implement targeted policies for long-run outcomes.

Our paper follows a similar approach but also builds on this literature in that we conduct

a series of experiments. Prior to each experiment, we use historical data (observational

at the start, and in later rounds experimental) to conduct estimation and counterfactual

evaluation of personalized treatment assignment rules.

However, in addition to off-policy evaluations, we also deploy our estimated targeted

policy in subsequent weeks. Very few studies are able to evaluate the performance of

targeted policies by deploying them in practice, enabling the use of “on-policy” evaluation

(using data from the real-world implementation of the targeted policy) in addition to

the counterfactual “off-policy” evaluation. Three papers that estimate, implement, and

evaluate targeted policies are Yang et al. (2023), Dubé and Misra (2023) and Simester

et al. (2020b). Each of these papers runs a sequence of two experiments, where data from
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the first experiment is used to estimate a targeted treatment assignment policy and generate

counterfactual estimates of its benefit. In the next step, the authors run an experiment

where they deploy the estimated policy in practice, evaluating the benefits on-policy. Yang

et al. (2023) use this approach to target discounts to digital subscribers of Boston Globe.

Dubé and Misra (2023) study the implications of personalized pricing on demand and

consumer welfare. Lastly, Simester et al. (2020b) evaluates the benefits of targeting on

customer membership for a large US retailer.

Similar to these studies, we run multiple experiments, in our case testing four different

personalized policies. We identify discrepancies between estimated (off-policy) and sub-

sequent actual (on-policy) performance, showing that they arise at least in part due to

a changing environment and proposing approaches to mitigate the problem. Two of the

above-referenced studies, Yang et al. (2023) and Simester et al. (2020b), also address the

issues with a changing environment. Simester et al. (2020b) evaluates the performance of

targeted policies using data from two experiments conducted 6 months apart. The first ex-

periment (training dataset) provides the training data to estimate 7 targeted policies using

different machine learning methods. These targeted policies are deployed in the second ex-

periment (validation dataset). The second experiment is used to evaluate how differences

(seasonality, covariate shifts, loss of information due to data aggregation) between the

training and validation data can result in the poor performance of targeted policies in the

validation dataset. Yang et al. (2023) considers the possibility of a changing environment

in their method for policy estimation, and their approach includes ongoing randomization

and adaptive policy learning that enables the targeted policy to be updated in response to

environmental changes.

In addition, the context of our study presents us with new challenges regarding capacity

constraints on the number of calls that can be made from the call center in an hour. His-

torically, practitioners and academics have considered the problem of prioritizing a costly

treatment to a subset of users (e.g., Ascarza (2018); Neslin et al. (2006)). In contrast, we

solve for the optimal allocation of scarce slots across the entire population. Resources are

often constrained in developing-country settings, a key difference from such technologies

in developed countries. Consequently, our optimization approach for personalized poli-

cies requires addressing this added challenge due to our setup. Ours is one of very few

research papers that augments recommendation systems and personalized policies (typi-

cally developed in settings without constraints, e.g., Athey et al. (2024); Bodapati (2008);

Rafieian and Yoganarasimhan (2021); Zhou and Zou (2023)) by incorporating constrained

optimization in a real-world application, with over a million customers and 91 treatments

8



and directly measuring its impact. We use a two-step approach, using machine learning

methods on the randomized data with the outcome model to predict pickup for each farmer

in each of the 91 call times. In the second step, we use these predictions along with call

time constraints (91 constraints, one for each call time as the number of calls cannot exceed

the pre-existing capacity limit of the call center) and the farmer constraints (one for each

farmer as each farmer should be placed in only one of the call times) to set up a mixed in-

teger programming problem and solving for it. In this regard, we add to very limited work

on incorporating constraints for targeted policies in a real-world setting. An exception is a

recent work by Lu et al. (2023) where the authors use primal-dual hybrid gradient linear

programming methods to incorporate fairness or volume constraints in estimating targeted

policies.

Constrained optimization for personalization allows us to study the equity-efficiency

trade-off and develop policies to improve engagement outcomes for vulnerable groups. This

relates to the fairness discussion in machine learning (Athey et al., 2022; Beretta et al.,

2019; Rambachan et al., 2020). We develop methods that can help the agricultural advi-

sory quantify the social returns to investing in greater bandwidth, as well as quantify the

differential impact on female and poorer subgroups. The constrained optimization meth-

ods for personalization used in this paper can be applied to several problems in marketing,

such as fairness concerns in promotion campaigns, advertisements (Friedman et al., 2023;

Li et al., 2024), risk assessment by insurance companies and banks, as well as targeting

with capacity constraints due to limitations on technology or supply.

Several of the above-cited studies provide evidence of the value of personalized policies

in marketing applications (Ascarza, 2018; Hitsch et al., 2024; Simester et al., 2020a; Yoga-

narasimhan et al., 2023). Our study has broader implications for marketing activities that

rely on attracting user attention. Moreover, we focus on a social impact application in a

developing country. The limited evidence on the value of targeted treatment assignment

rules (Agrawal et al., 2022; Athey et al., 2023a) in developing country setup studies delivery

techniques that require Internet access. We contribute findings for a technology (automated

voice calls) that can serve the poorest billion individuals currently lacking internet access

in a developing country. Finally, our focus on constraints and fairness can have significant

implications for managers working on social impact applications.
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3 Context

Improving agricultural practices is a key strategy to reduce poverty, promote food security,

and address environmental concerns (Foster and Rosenzweig, 2010; Takahashi et al., 2020).

A primary roadblock in adopting innovative agricultural practices is the limited access to

information by smallholder farmers(Dzanku et al., 2020; Magruder, 2018). Eliminating

this information gap is of paramount interest to policymakers and practitioners. In the

Indian context, information constraints have been shown to be binding for farmers across a

variety of topics such as adopting modern inputs and practices, mitigating climate shocks,

negotiating for harvest sales (Baul et al., 2024; Burlig et al., 2024; Cole and Fernando,

2021; Fernando, 2021; Giné et al., 2008; Jensen, 2007; Mitra et al., 2018).

While many developing countries have invested heavily in agricultural extension ser-

vices, their reach is often limited, and the empirical evidence on their efficacy is quite

mixed (Abate et al., 2023; Anderson and Feder, 2004; Spielman et al., 2021). India faces

such challenges. The rural population comprises 64% of the total population in India, and

the majority (about 90%) of the poor reside in rural areas.7 The Government of India

operates a pluralistic extension system with 90,000 extension agents (Swanson and Davis,

2014). However, less than 6% of farmers report having received extension services in the

past year in a survey with cotton farmers (Cole and Fernando, 2021). In the state where this

study took place, 4,900 village agricultural workers, agricultural supervisors, and Assistant

Agricultural Officers (AAO) serve eight million farmers.

A critical development in the past decade affecting the agricultural sector in developing

countries has been the widespread availability of low-cost telephone services. Technology

has opened up new opportunities for sharing information with farmers (Aker, 2011; Aker

et al., 2016; Fabregas et al., 2023). The development of machine-learning techniques offers

an even greater opportunity, potentially enabling agricultural advice to be customized, in

an automated fashion, for millions of farmers. This paper adds to the nascent literature

on bringing such techniques to large populations in a developing country (Agrawal et al.,

2022; Athey et al., 2023a).

To investigate the impact of service customization and targeting, we conducted a mul-

tistage experiment with a phone-based agricultural extension service in India. This digital

extension service, launched in 2018, has been developed and implemented by NGOs in

collaboration with an Indian state government.8 By the end of 2021, it served 1.3 million

7The percent of the population in rural areas in India is for 2022 from the World Bank’s DataBank, and
the fraction of poor corresponds to the 2022 Multidimensional Poverty Index (MPI) report by the United
Nations Development Program (UNDP).

8Specifically, this digital extension service has been developed and implemented by Precision Develop-

10



smallholder farmers throughout the state with a two-way, mobile-phone-based platform

and a live call center. This service has expanded rapidly, and as of 2024, it has 6.8 million

enrolled farmers.

The service provides customized advisories on 21 crops, livestock, and fisheries using

farmer covariate information (i.e., language, location, crop, water management) and agri-

cultural data (i.e., weather forecast, market information, pest/disease outbreaks). Users of

this service receive agricultural information through three channels: 1) weekly interactive

voice response (IVR) calls that provide farmers customized farming advisories timed to the

crop calendar (Outbound Calls); 2) an IVR platform that farmers can call in to listen to

content from an advisory library and record their questions; and 3) a call center where

farmers can call in and ask agricultural-related questions. Questions are answered by local

agronomists, who send recorded answers within 48 hours.

The experiment was conducted over six weeks in October and November 2021. The

weeks of this multistage experiment are defined in Table 1. Every week, we sent an agri-

cultural advisory push call to nearly 1 million farmers, prioritizing advisories on rice, one

of the most important staple crops in this Indian state. Appendix A shows example scripts

of agricultural advisory messages sent to farmers.9

4 Setup

In this section, we first provide a high-level overview of the different data collection methods

used during the six weeks of the experiments. Next, we introduce notation that will be

needed to describe our experiments and analysis more formally.

As described in the introduction, two data collection methods were used for this ex-

periment. The data collection method determines the probability (µij) that farmer i ∈
{1, 2, .., Nt} is called in day-hour block j ∈ J = 1, .., 91. The first data collection method,

which we refer to as “uniform randomization,” assigns each farmer i to each of 91 call times,

denoted j, with equal probability, so that µij = 1/91 for all i and j. The second data col-

lection method, which we call a “targeted policy,” is deterministic and depends on the

observable characteristics of a farmer xi. The targeted policy π is a mapping from farmer

covariates xi to treatment arms j. Thus, the probability that farmer i is allocated to call

ment and the Abdul Latif Jameel Poverty Action Lab in partnership with an Indian state government,
with support from the Bill & Melinda Gates Foundation.

9We provide example advisory messages for two types of messages in Appendix A. One is an advisory
message on pest management, and the other is an advisory message on basal fertilizer application for
transplanting.
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Table 1: Experiment Weeks in Octo-
ber and November 2021

Week
No.

Date Uniform Randomization Targeted Policy

Sample
Name

Sample
Size

Sample
Name

Sample
Size

1 Oct 5-10∗ N1,U 881,891 – –
2 Oct 18-24 N2,U 616,656 N2,π̂A

265,188
3 Oct 25-31 N3,U 879,109 – –
4 Nov 1,Nov 4-7∗ N4,U 707,644 N4,π̂B

167,995
5 Nov 8-14 N5,U 624,801 N5,π̂C

234,276
6 Nov 17-23 N6,U 587,608 N6,π̂D

227,386
Notes: ∗In these weeks, data was collected for only the indicated days of the week and not

the entire week. Nt,U is used to denote the sample that is allocated to uniform randomization

in week t. Nt,π̂e
is the sample that receives targeted policy π̂e where e ∈ {A,B,C,D} and t

denotes the week. Our sample includes 880,000 farmers for whom we observe a complete set

of covariates. The sample varies from around 800,000-880,000, depending on which farmers

are designated to receive messages each week.

time j is 1 if π(xi, ·) = j. During the course of this study, we implemented several different

targeted policies. In addition, in selected weeks, we implemented a higher-level experiment,

where eligible farmers were randomized (with constant probability) into either the uniform

randomization data collection or a targeted policy. Different targeted policies were used

in different weeks. Data collected using the uniform randomization method from previous

weeks was used to estimate a model and develop a targeted policy for the subsequent week.

Figure 1 shows the data collection process for every week of the experiment.

Formally, the experiment was conducted over six weeks t ∈ T ≡ {1, 2, 3, .., 6}. Each

week of data is a sample Nt of farmers drawn from the population. Nt consists of those

farmers who have a complete set of covariates and have signed up to receive messages

assigned for week t. The treatment is call time, which is a combination of hour and day of

the week. The call center operates from 8 AM to 9 PM, seven days a week, so there are 91

hour-day call times. The experiment is conducted on a weekly basis as new crop advisories

are provided to the farmers every week through the extension service. Every farmer i ∈
{1, 2, .., Nt} can receive only one of the individual treatments jit ∈ J ≡ {1, 2, .., 91} in each

week. The treatment J is a random variable with support in J and J ∼ FJ . Note that j

is a realization of J .

The outcome is binary pickup dummy Y obs
it . Let Yit(j) be the potential outcome for

farmer i in week t and call time j. The observed outcome can therefore be written in terms
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Figure 1: Two Data Collection Methods
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Notes: The figure illustrates the two different data collection methods. We start with uniform randomiza-
tion between 91 treatment arms. This data is used to estimate the targeted policies. In subsequent weeks
the targeted policies are deployed (our second method of collecting data).

of potential outcomes as Y obs
it =

∑|J |
j=1 1(Jit = j)Yit(j). Also, Y

obs
it is a random variable with

support in Y ≡ {0, 1}. xi ∈ X is the vector of observed covariates for individual i. This

vector does not vary with time, so we do not have the t subscript. We let FX denote the

distribution of X with support in X . Each week, the observed covariates are determined

before an intervention is assigned. Table A1 shows the set of observed covariates. It

includes gender, access to irrigation, land size, smartphone ownership, district of residence,

and historical engagement with the service prior to the start of our experiment.

The potential outcome for farmer i in call time j for week t, Yit(j), follows a Bernoulli

distribution with probability of pickup given by µ(x, j, t). Therefore, µ(x, j, t) = EY [Yit(j)|x].
In order to construct an estimator for µ, we need to specify a prediction model m (e.g.,

a LASSO regression model with a given specification), where we let M denote the set of

possible models, and a training dataset S ∈ [Y ,X ]n. Then, we denote an estimator by

µ̂ : X ×J × T ×M× [Y ,X ]n → [0, 1]. Given a ML model m ∈ M and a training dataset

S, µ̂(x, j, t;m,S) is the estimate of µ(x, j, t).

4.1 Targeted and Uniform Policies

Several policies π : X → J were estimated, deployed, and evaluated in this project. In

most scenarios in this project, we value reaching each farmer equally and do not put welfare

weights on the outcome. The population object of interest is therefore defined as:
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V (π,Seval) = EX∼FX
[EY Yt[(π(X))]]

where Seval is the evaluation sample. Class Π is to denote the constraints used in this

experiment. For this paper, it encodes budget constraints.10 Therefore, the optimal policy

π∗ is π∗(Π) = argmax{V (π,Seval) : π ∈ Π}. This paper uses machine learning models to

estimate targeted policies. The goal is to learn about the best call times for every farmer in

the sample using predicted pickup rates. The estimator of π∗ is denoted as π̂(X, t,Π;m,S).
This estimator is a function of covariates x and is parameterized by the week t, class Π of

policies, a ML model m, and the training data S used to estimate the parameters of the

model. It returns the best call time based on µ̂. Hence π̂ : X ×T ×P ×M× [Y ,X ]n → J
where,

π̂(x; t,Π;m,S) = argmax
j

µ̂(x; j, t;m,S), s.t. π ∈ Π

We call the estimated policies π̂ “targeted policies” throughout this paper. The popu-

lation object of interest for the targeted policy is the value of the targeted policy evaluated

on an evaluation sample Seval (V (π̂,Seval)). Therefore V : Π× {Y ,X}n → R and

V (π̂,Seval) = EX∼FX
[EY Yt[(π̂(X, ·))]]

As illustrated in Figure 1, dividing the population into a targeted policy and a group

whose call time is uniformly randomized serves to evaluate the targeted policy against a

“control group” (uniform randomization), but the control group itself generates data that

can be used to evaluate counterfactual policies and help design subsequent targeted policies.

In order to motivate the definition of the uniform policy, we first define a “fixed time

policy” πj where every farmer is called during call time j. Formally, πj(x) = j ∀x. The

uniform call time policy is explained using the following steps. For farmer i, step 1 is

to draw a random variable Jit from a discrete uniform distribution U{1, 91}. Step 2 is if

Jit = j, then call farmer i in call time j. The population object of interest for the fixed

call time policy is

V (πj,Seval) = EX∼FX
EY (Yt(π

j(X)))

= EX∼FX
(µ(X, j, t)).

10In Section 7.4, we incorporate weights into this population object of interest to discuss the equity
efficiency trade-off.
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Consequently, the population object of interest for the uniform policy is

V̄ (U ,SU) = EX∼FX
[EY [EJ∼U [

∑
j

(Yt(π
j)1(J = j))]]]

=
∑
j

EX∼FX
[EY [Yt(π

j)P(J = j)]]

=
∑
j

EX∼FX
[µ(X, j, t))P(J = j)]

=
1

91

91∑
j=1

V (πj)

where SU is the evaluation sample for the uniform policy.11In this paper, the data collected

using uniform randomization is used as a baseline as the uniform randomization data was

collected at the same time as the outcome data for target policy. We do not use the

historical data as a baseline because it was collected before the randomization and using it

as baseline will not control for the temporal shocks to the outcome variable across different

time periods. Moreover, Figure A1 suggests that very few calls were made during the

high-engagement weekend hours. This limits the possibility of having enough farmers with

varied characteristics across all of the 91 treatment arms.

5 The Effect of Call Times on Outcomes: Evidence

from Uniform Randomization

As described in Figure 1, in this project, uniform randomization was used as a data collec-

tion method for a randomly selected set of farmers. Although the project’s ultimate goals

include estimating and evaluating alternative targeted policies, we motivate this work by

reporting findings from the uniform randomization sample about the variation in engage-

ment across 91 call times. These findings showcase the importance of call time as well as

the heterogeneity of preferences across demographic groups.

Figure A2 shows farmers’ engagement with the service. The outcome variable is a binary

outcome representing whether a farmer picked up the first call.12 The average pickup rate

is around 31%, but there is substantial variation in pickup rates at different points of time

11In this paper, V̄ is used to denote the value of a random policy like uniform policy, and V is used for
the value of a deterministic policy like the targeted policies estimated in this paper.

12In most analyses in this paper, we focus on the pickup of the first attempt of the call, while each call
is attempted up to three times. In Section 7.3, we discuss the follow-up calls.
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during the week. This suggests that evening and morning hours have relatively higher

pickup than afternoon hours. We demonstrate the magnitude and statistical significance of

these differences in an abbreviated manner by showing the mean pickup rates for morning,

afternoon, and evening times and comparing afternoon pickup rates with morning and

evening pickup rates separately. Table 2 shows the average pickup in the afternoon is 1.3

(1.8) percentage points lower than the morning (evening).

The uniform randomization data helps us identify several hours during the weekends

that are high engagement hours, especially the evening hours. Historically, the agricultural

advisory service did not schedule many calls during the weekends even though it operated

all seven days of the week. Hence, it had inadvertently failed to take advantage of very

high engagement hours.

Table 2: Variation in Engagement by Call Times

Morning Afternoon Difference
Mean 0.320 0.307 0.013
Std. Error [0.00051] [0.00046] [0.00069]

Evening Afternoon Difference
Mean 0.325 0.307 0.018
Std. Error [0.00052] [0.00046] [0.00069]

Notes: We pool the data collected using uniform randomization in weeks 1,

2, and 3 of the experiment (see Table 1 for sample size). Morning hours are

between 8 AM to 12 PM, afternoon hours are between 12 PM to 5 PM, and

evening hours are between 5 PM to 9 PM.

Next, we present the socio-demographic characteristics of the sample and variation

in engagement for different farmer subgroups. Table A1 provides summary statistics on

farmer characteristics. About 18% of the sample are female farmers. Around 37.4% of the

farmers are smartphone users, and a little over 44% use irrigation systems on their land.

Additionally, the residential districts for the farmers are provided in the covariates data.

Previous research has shown substantial gender gaps in access to technology in agricul-

ture (Owusu et al., 2018; Quisumbing and Pandolfelli, 2010). Consistent with the literature,

we observe a persistent but time-varying gap in engagement rates for female farmers (0.29)

relative to male farmers (0.32), as shown in Panel (a) in Figure 2. The graph also suggests

that the high pickup times often overlap for male and female farmers. The overlap hours

have an important implication for policy design, as simply maximizing overall pickup rates

(equal weighting) could result in giving the most valuable time slots to men; alternatively,

placing a higher weight on reaching women could preserve some of the higher-value slots
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for women. This could help reduce the gender gap in engagement with the service.

We further explore the heterogeneity in farmers’ engagement by their access to informa-

tion and wealth levels. Our first result is that the average pickup rate among smartphone

users is 4.1 percentage points lower than among non-smartphone users. Figure A3 shows

this comparison of engagement by smartphone ownership.

We then examine the variation in pickup rates by the distribution of land size, which

serves as a proxy for wealth. We divide the sample of farmers into deciles based on their

land size. Panel (b) in Figure A3 shows that farmers at the high end of the land size

distribution have lower engagement than the farmers with smaller land sizes. These figures

together suggest that non-smartphone users and poor farmers are more engaged with the

service, consistent with the hypothesis that they have limited outside options to access

farming-related information.

We additionally discuss some crucial features of the farmers based on their historical

engagement behavior. We have data on farmers’ historical engagement with the agricultural

advisory service from the initiation of the service (July 2018) till right before our experiment

(September 2021). We also use historical engagement data to estimate targeted policies.

Figure A4 shows the distribution of pickup across the 91 call times in the historical data.

The farmers in the experiment sample registered with the agricultural advisory service

at different points in time. Panel (a) in Figure A5 shows the distribution of the length of

the total time with the service. The mean farmer duration with the service is 516 days.

Panel (b) shows the variation in the month when they started receiving calls from the

extension service. High enrollments are observed for the months of April, September, and

December. Since the experiment was conducted in the months of October and November

2021, it is possible that farmers who signed up with the service at different points in time

value the information sent out during the months of the experiment differently. Finally,

we show the variation in engagement during the weeks of the experiment by their duration

with the service. Figure A5 suggests the possibility of information fatigue directly related

to the time the farmers have been associated with the service. We define a new farmer

dummy, which takes a value of 1 if the farmer spent less than the mean duration with the

service and 0 otherwise. The engagement of new farmers is consistently higher than the

engagement of the old farmers (Panel (c) in Figure A5).

Finally, the assignment of calls to hours in the historical data followed a changing set

of ad hoc rules, resulting in a non-uniform distribution of calls across the 91 treatment

times. Figure A1 illustrates this separately for each historical year. In 2018, no calls were

made on Tuesdays, and very few calls were made on Sundays. In 2020 and 2021, very few
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Figure 2: (a) Pickup by time and gender, (b) Highest Pickup arms for female farmers and
(c) male farmers in the dataset.
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Notes: We pool the data collected using U in weeks 1, 2, and 3 of the experiment. Panel (a) illustrates the
gender gap in engagement over the 91 call times. Panel (b) shows the most popular call times for female
farmers arranged in increasing order of popularity, with the pickup for male farmers for comparison. Panel
(c) shows the most popular call times for male farmers arranged in increasing order of popularity with the
pickup for female farmers.
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calls were made on Sundays, especially during the evening. This highlights the benefits of

uniform randomization of call times to ensure that there is sufficient data to learn about

the relationship between farmer characteristics and engagement across all call times.

6 Method for Estimating and Evaluating a Targeted

Policy

As Figure 1 outlined, this project had multiple stages. In week 1, training data was collected

using U . In week 2, the uniform randomization data from week 1 was used to construct

and deploy a policy in a randomized controlled trial, comparing the targeted policy to the

uniform policy. In each subsequent week, data from the previous weeks’ uniform policies

were used to design a new targeted policy, which was again evaluated against the uniform

policy.

6.1 Estimate π̂ Using Uniform Randomized Data

This section describes how targeted policies were estimated. First, we selected an estimator

for the outcome model. With sufficient data, it would be possible to separately estimate

µ(·, j, t) for each treatment arm j and week t. However, even though we have approximately

880,000 farmers in the sample with 91 treatment arms and many covariates, it was efficient

to pool the data into a single model and to use data-driven model selection. Among many

reasonable machine learning models (e.g., LASSO, random forest) or matrix factorization

methods (e.g., recommendation systems), we chose LASSO regularized regression due to

a large number of potential treatments and covariates. Our regressors include treatment

indicators for each call time j, covariates xi, and interactions of those covariates with

treatment indicators.

Because the outcome model will be used to select treatments, it is important that our

estimator µ̂(X, J, t;m,S) yields useful estimates of the difference in expected outcomes

across treatment arms. Since our training data S has uniform randomization, we do not

need to be concerned that farmers assigned to different treatment arms are different in

some unobserved way; the randomization ensures independence ({Yi(j)}Jj=1 ⊥⊥ J) and thus

unconfoundedness. Formally, the estimator takes the form:

logit(µij) = Xiβ +
91∑
j=1

δjJi +
91∑
j=1

γjXiJi (1)
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where µij is the probability of call pickup, X denotes the covariate matrix, and J denotes

the treatment dummies. The objective of LASSO is to minimize the following:

−l(θ,X, T ) + λ∥β∥+ λ∥γ∥, (2)

where θ = (β, δ, γ) and l denotes the log-likelihood of the outcome. The selection of the

regularization parameter λ is done using cross-validation. We consider the full training

data and split it into k folds. The optimal λ0 minimizes the average mean squared error

across the k folds. The mean squared error is computed as the squared difference between

the observed and predicted outcome.

The model incorporates the main effects and the covariates’ interaction with the treat-

ment dummies. Lastly, we do not penalize the coefficients on the treatment dummies. We

also estimate a few variations of the above specification. For instance, a model with a poly-

nomial function for the treatment dummies is estimated in Appendix F.1. We also estimate

an additional specification where the penalty on the regularization parameters varies based

on the order of the interaction terms. We call this specification the hierarchical LASSO.

The interaction effects are likely smaller in models with two-way and higher-order interac-

tions than the main effects. Hence, the penalties are allowed to increase with the degree of

the interactions. Appendix F.2 discusses this variation and result.

Below, we evaluate the expected benefit from assigning farmers using a targeted policy

derived from µ̂. If the same data is used to generate the targeted policy and evaluate its

effectiveness, the result will likely overstate the benefits of the policy. We use cross-fitting

to address this concern, dividing the data into K equal groups (folds). Denoting k(i) the

fold which contains farmer i, for each fold k, we estimate the model on all folds except k,

and then use the model parameters to predict pickup for farmers in the kth fold. We repeat

this k times to generate µ̂−k(i) for all farmers in the sample (Figure A6).13

The estimate of π̂−k also depends on the constraints related to technological limits on

the number of farmers that can be called in an hour-day combination. We account for

this by using a two-step process. Step 1 uses LASSO and data collected using uniform

randomization to predict µ̂ with cross-fitting. Step 2 uses µ̂ and the budget constraints to

13The concept of cross-fitting is similar but distinct from cross-validation. Cross-validation is about
model selection and selecting tuning parameters where the ultimate goal is to estimate a single model on
the entire training data (the one that minimizes the cross-validation error), while with cross-fitting, we
retain the models estimated on the different folds as an input to a subsequent step of the analysis. The
subsequent step in our context is estimating the targeted policy.
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allocate farmers to their optimal or near-optimal call times as shown below:

max
z

n∑
i=1

J∑
j=1

zijµ̂−k(i)(xi, j, ·) (3)

s.t.
∑
j

zij = 1 ∀i,
∑
i

zij ≤ bj ∀j and zij ∈ {0, 1}

where bj is the capacity limit on call time j. The decision variables are zij, which takes a

value of 1 if farmer i is allocated to call time j and 0 otherwise. The decision variables can

be represented in the form of a N×J matrix z, where each row corresponds to a farmer and

each column represents a treatment arm. The set of constraints is combined to generate a

matrix A that has dimension (N + J)× (N ∗ J). The first N rows of A ensure that every

farmer i can be allocated to only one call time j. The remaining J rows ensure that the

sum of allocation in each call time cannot exceed the total capacity, and, therefore, they

should add to be less than or equal to bj. The resulting set of equations for constraints is

A× vec z ≤ [1, .., 1, b1, .., bJ ]. Since the decision variables are discrete, this can be set up as

an integer programming problem.

We use the Gurobi Parallel Mixed Integer Programming solver. This solver uses a linear-

programming-based branch-and-bound algorithm for mixed integer programming problems.

All the steps are summarized in the targeting algorithm below for a training dataset S.

Algorithm 1 Algorithm for Estimating π̂

Input: Capacity limits b; Training data S
Result: Model parameters (δ̂, β̂, γ̂), Allocation z

1: Partition data into K mutually exclusive folds
2: Estimate LASSO using all folds except k (Equation 2): Obtain δ̂, β̂, γ̂
3: Predict for each i in k: µ̂−k(xi, Ji, ·)
4: Repeat 1, 2, and 3 for all folds: Append µ̂(−k) ∀ k ∈ K.

5: Constrained Optimization: maxz
∑n

i=1

∑J
j=1 zijµ̂−k(i)(xi, j, ·) s.t.

∑
j zij =

1∀i and
∑

i zij ≤ bj∀j (Equation 3)
6: Use µ̂, capacity limit b and solve for z
7: return [δ̂, β̂, γ̂, z]

Once we have estimated π̂, we can evaluate it in two ways. In on-policy evaluations, we

implement the targeted policy in practice and compare it to the alternative uniform policy.

Alternatively, we can employ off-policy or counterfactual evaluation using the data collected

via U to evaluate the counterfactual outcome from implementing any targeted policy. Below
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we describe the two concepts used to evaluate targeted policies in this project.14

6.2 Off-Policy Evaluation

Off-policy evaluation is used to compute the value of targeted policies from a dataset that is

collected using a different policy (Athey and Wager, 2021; Zhou et al., 2022). For instance,

for this experiment, data is collected using uniform randomization for weeks t ∈ {1, 2, .., 6}.
This uniform randomized data can be used to estimate and evaluate π̂.

Appendix D provides details on off-policy evaluation for a simplified setting with two

covariates and four treatment arms. The key idea is that under uniform randomization,
N
91

farmers receive a treatment under U that matches their assignment under π̂. The

outcome of this subset of farmers can be used to estimate the value of targeted policy

counterfactually.

Estimator of Policy Value: The estimators for the population objects of interest

(defined in Section 4) are obtained using data collected from the uniform random policy.

All targeted policies are based on an underlying outcome model estimated via cross-fitting.

The estimator for the value of π̂ under the off-policy evaluation is denoted by V̂ Off(π̂,Seval).

V̂ Off(π̂,Seval) =

∑
i∈Seval Y obs

it 1(π̂(xi, ·) = Jit)∑
i∈Seval 1(π̂(xi, ·) = Jit)

This is an unbiased estimator of the value of the targeted policy given randomized

data and the use of cross-fitting in constructing the policy. Note that after we estimate

π̂ using the uniform randomization data, there is a further important step of conducting

the off-policy evaluation, as we want to counterfactually estimate the value of π̂ prior to

deployment. In a production setting, we would only deploy π̂ if, counterfactually, we see

significant gains of deploying π̂ over our baseline uniform policy.

6.3 On-Policy Evaluation

Once the off-policy evaluation showed that there were significant gains from deploying π̂

over the uniform policy, the next step was to deploy the targeted policy π̂. In the subsequent

week, we randomly divided the farmers into two groups. Group 1 received calls according

to π̂. Group 2 received calls according to the uniform policy. At the end of the week,

14For comparing the value of two policies in the same data set, we cannot analyze the two components
of the difference separately since the same observations appear in both terms in regions of overlap. Hence,
we sum over observations and for each observation take the difference.
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engagement data was collected for both the groups, as illustrated in Figure 1. This data

allows us to do on-policy evaluation.

The population object of interest for the on-policy evaluation is defined as δ(π̂,U) =

V (π̂,Seval) − V̄ (U ,SU), where Seval is the evaluation data for the targeted policy and SU

is the evaluation data for the uniform policy group. In addition to the overall difference

between the two policies, these differences can also be computed for the popular hours. In

order to do this comparison for call time j, the covariate space is split in a way such that,

for the subset of covariates, the best call time is j. This subset and the population objects

of interest are defined below. Appendix D explains on-policy evaluation for the simplified

setting. We use R = {x ∈ X : π̂(x, ·) = j} to denote the subset. Moreover, difference in

the value of two policies (δ) is defined below.

δ(π̂,U)j = Ex∈R[EY [(Yt(π̂(·))]]− Ex∈R[EY [EJ∼U [
∑
j

(Yt(π
j)1(J = j))]]]

Note that on-policy estimation is straightforward: it simply entails taking a sample mean

on a dataset where the relevant policy was applied. For reference, we define V̂ On(S) =∑
i∈S Y obs

it

|S| .

7 Results: Estimating, Evaluating, and Deploying Tar-

geted Policies

In this section, we present our main results employing on- and off-policy evaluation. Our

first step was to collect the data using uniform randomization. This uniform randomization

data was then used to estimate π̂. We present the π̂ that was estimated using the uniform

randomization data from weeks 1, 2, and 3 and call it π̂D.

The machine learning model used for this analysis is the LASSO model (Equation 2).

This model, along with the datasets, were used to predict the probability of pickup for

every farmer, for each of the 91 call times (µ̂). We do not penalize the coefficients on the

treatment dummies. The optimal penalty (λ0) for all other coefficients is chosen to minimize

cross-validation error. Figure 3 (a) shows the Mean Squared Error (MSE) corresponding

to different values of λ.15

15Panel (a) in Figure 3 shows the output of the cross-validation exercise used to choose the optimal λ. It
displays two special values of λ with vertical bars in the graph. The λ corresponding to the vertical bar on
the left minimizes the cross-validated error. The λ corresponding to the vertical bar on the right provides
the highest penalized model such that the cross-validated MSE is within one standard error of the lowest
λ. We use the λ that minimizes the cross-validated error. λ1SE is also reported for extreme cases when too
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To assess the out-of-sample prediction performance of the LASSO model, the data can

be divided into K folds for cross-fitting. The cross-fitting process is discussed in section

6. Panel (b) in Figure 3 shows the Receiver Operating Characteristics (ROC) plot for the

binary pickup (out of sample cross-fitted data). The Area Under the Curve (AUC) is 0.683.

This suggests that the LASSO model would be able to correctly predict whether a user

will answer the call or not in about 68.3% of the cases. Panel (c) shows the distribution

of predicted responses by the class of the binary pickup variable. The predicted response

for farmers with actual pickup as 1 is higher when compared to those who did not pick up

the calls. Lastly, Panel (d) in Figure 3 shows the calibration plot between the predicted

and true pickup. The calibration plots done separately by farmer covariates are shown in

Figure A7. We provide the plots by farmer gender and by farmer land size in this appendix.

Following the steps in Algorithm 1 on the uniform randomized data for weeks 1, 2, and

3, off-policy evaluation can be used to estimate the value of π̂D counterfactually. The means

and standard errors corresponding to off-policy estimator V̂ Off(π̂D,Seval) defined in Section

6.2 can be used to estimate the value of targeted policy counterfactually. Moreover, the

means and standard errors of the estimator defined in Section 6.3 can be used to estimate

the value of the uniform policy. Figure 4 shows that there are substantial gains (2.6 pp or

8%) to calling farmers according to π̂D over the baseline of uniform policy. To provide a

sense of the gains for different optimal call times, Figure 4 also reports the off-policy gains

for the 12 most popular call times (which comprise 91% of the targeted policy sample.)

Next, we explore whether there are gains from adding additional covariates to the model,

incorporating farmer duration, start month, and mean past engagement as covariates.16

To examine the prediction accuracy of this model, we repeat the same steps as above and

compute the ROC curve and AUC. The AUC is 0.681 when we incorporate these additional

measures from the historical data. The targeted policy using this model produces gains

close to 8%, which is comparable to the gains observed using π̂D.

7.1 Deploying and Evaluating π̂

As part of the experiment, π̂ was estimated, deployed, and evaluated; we iteratively updated

π̂ as we collected additional uniform data. We also refined some details of our approach.

For example, in week 2, we used 21 time slots (morning, afternoon, and evening) over seven

days, subsequently shifting to 91 slots (13 hour slots per day), and, in other weeks, holidays

many variables get dropped from the specification. However, we do not have such an extreme situation for
our estimation, and we use λmin.

16The details on the matrix completion exercise are presented in Appendix F.3.
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Figure 3: Out-of-Sample Predictive Performance

−12 −10 −8 −6 −4

0.
20

0
0.

20
5

0.
21

0
0.

21
5

Log(λ)

M
ea

n−
S

qu
ar

ed
 E

rr
or

1556 1026 455 186 119 107 98 97 96 93 93

a. Cross-Validation Error b. ROC curve

0.0

0.2

0.4

0.6

0.8

FALSE TRUE
Actual Pickup

P
re

di
ct

ed
 P

ic
ku

p

c. Predicted Response

0.2

0.4

0.6

0.
2

0.
4

0.
6

Means of true outcome within intervals

M
id

po
in

ts
 o

f i
nt

er
va

ls
 o

f p
re

di
ct

ed
 p

ic
ku

p

d. Calibration Plot

Notes: (a) shows the MSE corresponding to the different regularization parameters (λ) used in our analysis.
(b) shows the ROC curve for the out-of-sample prediction using cross-fitted data. The AUC is 0.683. (c)
shows the distribution of predicted response by the binary true pickup in the data. (d) shows the calibration
plot for true and predicted pickup using cross-fitted data.

25



Figure 4: Off-Policy Evaluation: π̂D and Uniform
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or other real-world constraints affected the set of days in which we could implement policies.

These details are described in Appendix E.

We now present results from the final week of our study, in which we conduct an

on-policy evaluation of π̂D.
17 In the final week, we randomly assigned farmers into two

groups. The first group was assigned targeted policy π̂D, and the second group was called

according to the uniform randomization. We compare the average pickup for the two

groups in Table 3. Table 3 shows the difference between the sample mean of farmers who

received calls according to π̂D and those that got called according to the uniform policy.

The differences are shown for the overall sample as well for the sample of female and male

farmers. Surprisingly, there is only a .4 percentage point increase in overall pickup relative

to the control group (30.9 pp); this gain is much smaller than the 2.6 percentage point

gains predicted by off-policy evaluation (Figure 4).

Our finding of lower-than-expected performance is in line with the recent work dis-

cussing distribution or dataset shifts in the test data (Kuang et al., 2020; Rabanser et al.,

2019). In the next two subsections, we seek to understand better why the on-policy per-

17Appendix C provides details on the intermediate policies deployed during the experiment in weeks 2,
4, and 5, respectively.
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formance was lower than expected and propose approaches to improve the robustness of

estimated policies.

Table 3: On-Policy Evaluation in Week 6

Data Collection-policy π̂D Uniform Difference
Outcome Variable

All Farmers
First Call 0.313 0.309 0.004

[0.001] [0.001] [0.001]
Female Farmers

First Call 0.2971 0.2901 0.0069
[0.0023] [0.0014] [0.0027]

Male Farmers
First Call 0.3167 0.3135 0.0032

[0.0011] [0.0007] [0.0013]

N 227,386 587,608
Notes: On-policy evaluation estimates use sample means for each of the two

data collection mechanisms from Week 6.

7.2 Evaluating Targeted Policy on Future Weeks

A robust, targeted policy should work not just out-of-sample for the time period it is

estimated but also out-of-sample in subsequent weeks when it is prospectively deployed.

However, if the distribution of the outcome variable is subject to systematic variation over

time, the policy designer may face a trade-off: placing greater weight on more recent data

may focus on behavior that is closer to what will be observed in the near future but at a

cost of using less of the information available from earlier weeks.

In this section, we take advantage of the fact that we have a number of weeks of random

uniform data, which allows us to vary the number of historic weeks used when estimating

a policy and explore the robustness of the policy in subsequent weeks of data (e.g., out-

of-sample). This relates to the ideas of stability and transportability of targeted policies

on future weeks in (Hitsch et al., 2024). Figure 5 provides an overview of our approach:

we consider four scenarios in which older data is down-weighted in our policy estimation.

This is possible in a setting such as agriculture where seasonality considerations may affect

farmers’ workload and task distribution (Gill et al., 1991; Vemireddy and Pingali, 2021).

The real world may also be subject to other events, such as festivals or cricket matches,

which alter time-use preferences and hence affect actual gains of implemented policies.
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Using our notation for training data S and evaluation data Seval, we see that the gains

from off-policy evaluations do indeed depend on the degree to which the estimation weights

more recent vs. less recent data. In Figure 5, “Train” indicates the weeks used to train the

policy, and “Test” indicates the week used in the off-policy evaluation. The weights refer to

the relative weighting in the LASSO model.18 The bars give the pickup rate for the targeted

policy and the uniform policy. The estimate for the differences in these values is provided

at the top of the bars. We find substantial gains (5-8%) for the value of the targeted policy

counterfactually estimated over the uniform policy for scenarios where the training data

weeks closest to the test week are weighted the highest in the machine learning model.

This is likely because the most recent weeks of data capture the technology and preference

shocks much better than the older weeks (Figure 5).

Figure 5: Off-Policy Evaluation of Targeted Policies Using Subsequent Weeks’ Evaluation
Data
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Notes: We use varying subsets of uniform randomization data over the six weeks of the experiment for
the estimation (“Train”) and evaluation (“Test”) of targeted policies in this figure counterfactually. In
scenario 1, the targeted policy is estimated with data from weeks 1 and 2, while the evaluation data comes
from week 3. The entries for targeted policy in the paper are means and standard errors of V̂ Off(π̂,SU,3),
as described in Section 6.2. The entries for uniform policy are on-policy sample averages of outcomes for
units assigned to uniform policy in the Test week; for scenario 1, this is week 3. Similarly, in scenarios 2,
3, and 4, the targeted policy is estimated using data from weeks 1, 2.., and 5 with varying weights.

18The objective function for the weighted LASSO is provided below∑
t

−Wtl(θ,Xt, J) + λ∥β∥+ λ∥γ∥

where Wt is the weight associated with the training sample in week t and t ∈ {1, 2, .., 5}.
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7.3 Robustness to Shocks

The overall objective of this project is to maximize farmer engagement with the service.

The policy was estimated and deployed for the timing of the first call attempt each week

to reach a farmer. In fact, if a farmer does not answer the phone, the dialing software

automatically attempts a second call 24 hours later, and if that is not answered, a third

and final attempt is made 24 hours later (Figure A8). While, in principle, the second

and third calls could have been optimized, the nonprofit did not want to take on such

operational complexity. We can, however, use these follow-up calls to provide a sense of

how follow-up calls can help mitigate some of the shocks to the first call.

This section explores the efficacy of the rule of thumb of calling farmers 24 hours

later and proposes a method for counterfactual evaluation of all three calls. This section

illustrates how the targeted policy can improve the overall engagement of farmers relative

to the uniform policy. We provide the first evidence for this mechanism using the overall

pickup over the three calls for our on-policy evaluation of π̂D (Table 4). We find the impact

of targeted policy is higher when examining overall engagement by adding the pickup over

call attempts 1, 2, and 3 than only examining the engagement over the first call. If there

are shocks to the first call, follow-up calls can mitigate some of the cost.

Table 4: Incorporating Follow-Up Calls to Miti-
gate Shocks: On-Policy Evaluation

Data Collection-policy π̂D Uniform Difference
Outcome Variable

All Farmers
Call 1,2,3 0.552 0.544 0.008

[0.001] [0.001] [0.001]
Female Farmers

Call 1,2,3 0.5249 0.5133 0.0116
[0.0025] [0.0016] [0.0029]

Male Farmers
Call 1,2,3 0.5577 0.5500 0.0077

[0.0011] [0.0007] [0.0014]

N 227,386 587,608
Notes: This table shows the on-policy evaluation results for targeted policy

π̂D in week 6. The farmers are randomized between two groups. Group A

gets called according to π̂D, and Group B gets called according to uniform

randomization. Sample means are used to estimate the value of V (π̂D,Seval)

and ¯V (U).
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Next, we provide evidence of the impact of the first-call targeted policy on overall

engagement using off-policy evaluations. Figure A9 provides evidence that the benefit of

targeting the first calls has benefits for overall farmer engagement. For this exercise, π̂

is estimated on uniformly randomized data for the first calls in week 1 and week 2. We

evaluate the first-call policy not just on the first call but also on the follow-up calls. The

sample considered for evaluation for the targeted policy corresponds to a subset of people

in the evaluation set whose actual assignment matched the targeted policy according to

the first call targeted policy. The first two bars in Figure A9 show the gains of targeting

the first call on the first call. Next, we add the pickup over the first and second calls

for the evaluation sample. We continue to see that the pickup over the first two calls for

the targeted policy group is higher than the pickup for the first and second calls for the

uniform group (2 pp (SE=0.36)). Next, we add pickup over calls 1, 2, and 3. We see

that the targeted policy engagement is higher than the uniform policy engagement (1.6 pp

(SE=0.35)).

Furthermore, we provide some evidence of the benefit of targeting second calls. We

estimate a targeted policy for the second call using data on whether farmers answered a

second call. Among the farmers who did not pick up the first call in week 1 and week 2, we

estimate a second call targeted policy. We evaluate the second call targeted policy on the

second call data but adjust for the propensity of the pickup in the first call. Here are the

steps to this evaluation: we predict pickup for first calls under the first call counterfactual

policy (first call targeted policy). Next, we reweigh all of the second call data in the

evaluation step according to the inverse propensity weights. This adjusts for the fact that

targeting the first call changes the set of people left over for the second call. The results

are provided in Table 5. We observe a 4.3 pp gain from targeting the second calls relative

to the baseline mean of the uniform group for the inverse propensity-weighted pickup of

29.8%.

7.4 Bandwidth Constraints and Equity-Efficiency Trade-Off

We begin this section by first estimating the benefits of expanding the bandwidth of the

agricultural advisory service. We do this computation counterfactually using the uniform

randomization data for weeks 1, 2, and 3 of the experiment. We estimate policies by

modifying Algorithm 1, in particular by altering the bandwidth limits in the constrained

optimization step. We start with a bandwidth limit of 10,000 farmers per treatment arm

and then gradually expand it to 90,000 farmers. We conduct a counterfactual analysis for

a scenario that differs from the implemented experiment, where we deployed farmers to
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Table 5: Incorporating Follow-Up Calls to Mitigate Shocks

Targeted
Policy

Uniform Difference

Impact of Policy Targeting Second Call on Pick-up of Second Call
Second Call 0.341 0.298 0.043

[0.0061] [0.0006] [0.0061]
Notes: The training and evaluation data for estimating the value of targeted policy

counterfactually and the uniform policy uses the uniform randomization data for week

1 and week 2. The training data for estimating the second call target policy consists

of N second
1,U = 630, 383, N second

2,U = 431, 290. Note the estimate for the V̂ Off(π̂, Ssecond
U,1,2 )

is done for the inverse propensity weighted second call pick-up instead of the non-

adjusted pick-up.

the target and uniform groups. Instead, here we conduct counterfactual analysis for the

scenarios where the sample of farmers (600,000 farmers randomly drawn from our final

sample in weeks 1,2 and 3 for this exercise) would be called according to the targeted

policy, and there is no uniform call time group.

We find substantial counterfactual gains in pickup for the targeted policy by relaxing

the budget constraint. As the budget constraint is expanded from 10,000 to 90,000, the

estimate for V̂ Off(π̂,SU) increases from 0.3151 (SE=0.0037) to 0.3349 (SE=0.0037). The

increase for all farmers is shown in Panel (a) in Figure 6. In Panel (b) in Figure 6, we show

the changes for female and male farmers. Finally, in Panel (c), we illustrate the increase

separately for smartphone and non-smartphone users. Expanding bandwidth improves call

pickup rates for all subgroups. However, since all types of farmers are weighted equally in

the optimization, we need large increases in bandwidth to substantially improve the pickup

for vulnerable groups such as female farmers and non-smartphone users.

An alternative way to improve the engagement of vulnerable groups with the agricultural

advisory service is to attach higher weights to the vulnerable groups in the constrained

optimization step. In fact, there is a substantial overlap between the top pickup call times

for male and female farmers, as seen in Panel (b) and (c) of Figure 2. This suggests

the possibility that an algorithm that is designed to maximize overall pickup rates could

assign high-value slots to men; there may be a trade-off in employing a welfare-sensitive

algorithm that puts a greater weight on reaching female farmers. This motivates the next

analysis, where we vary the weights by farmers’ characteristics. We first draw a random

sample of 600,000 farmers from the datasets collected using uniform randomization in

weeks 1, 2, and 3 of the experiment. We estimate µ̂ as before, modifying the constrained

optimization step of Algorithm 1 to add weights as follows. Let G be the group indicator
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Figure 6: Relaxing the Budget Constraint
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weeks 1, 2 and 3 of the experiment. π̂ is estimated using Algorithm 1, with modified constraints. Panel
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in an hour to 90,000 farmers. Panel (b) and (c) show the gains by subgroups.
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Figure 7: Weighting Subgroups Differently in Constrained Optimization
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evaluations. Panel (a) shows the scenarios where the bandwidth is kept constant at 10,000 farmers, and we
vary the weights across the three scenarios between male and female farmers. The value of targeted policy
is denoted where we attach weights for subgroups is V (π,w, .) =

∑
g w(g)EX∼FgE(Y (π(X))) as defined in

Section 7.4. Panel (b) shows an expansion in bandwidth from 9,000 to 20,000 but attaches a higher weight
to females than males. Finally, Panel (c) shows gains as we expand the bandwidth but put higher weight
on non-smartphone users.
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random variable with support in G and g be the realization of this random variable. X

follows a mixture distribution X|G = g ∼ Fg. The population objective function in

this case is V (π,w,Seval) =
∑

g w(g)EX∼Fg [EY Yt[(π(X))]], where w is the weight function

w : G → [0, 1] s.t.
∑

g∈G w(g) = 1.

For any given set of weights, we estimate an optimal policy for the corresponding

weighted objective function. Panel (a) in Figure 7 illustrates three scenarios for varying

weighting schemes for male and female farmers. Here, we keep the bandwidth constant

at 10,000 calls per hour and vary weights only. In the first case, males and females are

weighted equally. In the second case, females are given 10 times the weight as males.

Finally, in the last case, females are given 20 times the weight as males. The constraints

are tight and binding in the optimization, which means increasing the relative weight on

females moves more female farmers into near-optimal slots. We can also calculate the “real

world” sense of trade-offs. Since 18% of our sample is female (sample size is 600,000 for

this exercise), moving from scenario 1 to scenario 3 enables us to reach 1,426 more women

at the expense of 1,968 fewer men. The bandwidth constraints have been scaled down as

the analysis includes a smaller sample than 1.3 million farmers, and we take into account

scheduling only one message for each farmer, which also does not include the follow-up

calls.19

Moreover, we explore the scenarios where the constraints are relaxed, but while doing

that, we put higher weights on the vulnerable groups. For instance, in Panel (b) we expand

the bandwidth from 9,000 to 20,000 farmers per hour. However, we weight the females 15

times higher than the males in the constrained optimization step. This counterfactual

analysis shows that female pickup increases by 2.35 pp (SE=0.98). Similarly, in Panel (c),

we expand the bandwidth from 9,000 to 25,000 but weight the non-smartphone users more

than the smartphone users. We find that this improves the pickup of non-smartphone users

by 2.25 pp (SE=0.52). This translates into reaching an additional 8,505 non-smartphone

users at the cost of reaching 2,398 fewer smartphone users. Attaching a higher weight

to non-smartphone users as more slots are added could be beneficial as they are likely

to benefit more from this advisory service since they might have limited access to other

sources of information.

19In practice, two or three calls had to be scheduled for 1.3 million farmers each week, and every message
call included two follow-up calls if the farmer did not pick up the call on the first and second attempts.
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8 Discussion

This project develops, implements, and evaluates a recommendation system designed to

increase engagement in an agricultural advisory service in rural areas in an eastern state

in India. Our research design, which tests estimated targeted policies against a control

group policy of uniform random assignment, allows us to perform both on- and off-policy

evaluation. We find that personalizing call timings can increase engagement meaningfully,

with estimated off-policy gains as high as 8 percent. These gains come at virtually no

programmatic cost: While estimating the targeted policy requires LASSO regression and

a complex integer programming problem, the computational cost is negligible, even in a

setting with almost one million weekly users.

Our paper serves as an important proof of concept, showing that advanced recommen-

dation systems typically employed in apps or web settings can work with technology as

simple as automated voice telephone calls, even in data-poor environments.

Our paper also highlights some of the key trade-offs between on- and off-policy eval-

uation. Off-policy evaluation has the significant virtue of flexibility. Because our control

group was called at randomly assigned times, we were able to tackle a range of important

questions. We were able to precisely quantify the equity-efficiency trade-off that the orga-

nization would face if it placed higher welfare weights on reaching women farmers, and we

show that recent data is more predictive of future farmer behavior than data just a few

weeks older.

In contrast, on-policy evaluation has significantly more statistical power. It also helps

us to identify the possible existence of technology or preference shocks that degrade the

performance of targeted policies in future weeks. We show several ways of modifying the

policy to account for the possibility of such shocks. First, attaching a higher weight to

training samples closest to the test data week provides robust policies for future weeks.

This is because agriculture is a seasonal activity, and the weeks closest to the test data

capture the likelihood of such shocks better than older weeks. We also find that the

nonprofit’s default policy of scheduling follow-up calls 24 hours later and, if necessary, 48

hours later can reduce the apparent effect of shocks. Gains could be even larger if the

timing of the follow-up calls were personalized.

Engagement and learning new information are the initial key steps in improving farm-

ers’ productivity and welfare. As shown in Fabregas et al. (2019), sharing agricultural

information using digital technologies leads to a 22% increase in farmers’ odds of adopting

recommended agricultural inputs and a 4% increase in farmers’ yield. While our experiment

focuses on measuring the impact on farmers’ engagement with the digital service, future
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work will evaluate the impact of customizing content on farmers’ practices and welfare.
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Appendix

A Example Script of Agricultural Advisory Messages

This section provides two examples of agricultural advisory messages that were sent through

the extension service to the farmers in our multistage experiment sample.

Example 1. Advisory on pest management: Namaskar. Today we will discuss about

neck blast disease and its management in paddy crop. Due to high relative humidity and

differential day and night temperature Neck Blast disease incidence can be seen in paddy

crops. To manage these diseases, first drain out excess water from the paddy field. Spray

Hexaconazole (Contaf Plus/Hexadhan Plus/Trigger Pro) @ 400-ml/acre or Azoxystrobi+

Difenoconazole (Amistar Top/ Chemistar /Karishma) @ 200-ml/acre or Tebuconazole +

Trifloxystrobin (Nativo) @ 80-gram/acre. Thank you and remember that if you have ques-

tions about this advisory or need more information, you can call the hotline number on

155333.

Example 2. Advisory on basal fertilizer application for transplanting: Namaskar. Today

we will share a few tips for applying basal fertilizers correctly for farmers who are growing

HYV paddy. If you have not yet done so, we advise you to complete your transplanting by

August 15th. Before applying fertilizers at the time of sowing, you should determine what

kind of soil you have. This is because the fertilizers recommended are different for different

soil. You should apply 35 kg DAP, 30 kg Potash, and 8 kg Urea per acre during the last

puddling. Remember again that you should apply 35 kg DAP, 30 kg Potash, and 8 kg Urea

per acre at the time of last puddling. Please remember 1acre=25 guntha. However, you

should apply Potash in two equal splits at the basal and PI stages if you have sandy soil.

Also, do not forget that zinc deficiency is the most widespread micronutrient disorder in

paddy, affecting plant growth. For this reason, we suggest that you can apply 10 kg of Zinc

Sulphate micronutrient per acre based on a soil test report or if your soil is deficient in

zinc. Thank you and remember that if you have questions about this advisory or need more

information, you can call the hotline number on 155333, and we will provide this message

to your mobile via SMS.
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B Additional Tables and Figures

Figure A1: Number of push calls sent during each call hour in the past
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Notes: These figures show the number of push calls sent between July 2018 and September 30, 2021. It
illustrates that push calls used to be sent in an ad hoc manner in the past.
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Figure A2: Pickup by 91 Treatment Arms
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Notes: We pool the data collected using uniform randomization in weeks 1, 2, and 3 of the experiment (see
Table 1 for sample size). It illustrates the variation in engagement between the 91 call times, which is a
combination of the day of the week and the hour of the day (Mean +/- 1.96SE).
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Figure A3: (a) Pickup by time and smartphone, (b) Pickup by the distribution of land
size.
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Notes: For this figure, we pool the data collected using uniform randomization in weeks 1, 2, and 3 of the
experiment. Panel (a) illustrates the smartphone users’ and nonusers’ gap in engagement with the service
over the 91 call times. Panel (b) shows the variation in pickup by land size (Mean +/- 1.96se). We divide
the sample of farmers into deciles based on their land size. For each decile, we compute the mean and
standard error for pickup.
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Table A1: Summary Statistics

Variable Mean Std. Median
A. Outcome Variable

Pick-up 0.318 0.283 0.250

B. Covariates
Female 0.181 0.385 0.000
Smartphone 0.374 0.484 0.000
Irrigation 0.444 0.497 0.000
Landsize 1.286 1.881 0.809

N 884,194
Notes: We also include the district of residence and historical

engagement as covariates for estimating π̂(xi, ·).

Figure A4: Pickup by 91 Treatment Arms
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Notes: We pool the data from July 2018 to September 2021 for this figure.
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Figure A5: (a) Duration with service, (b) Start month of service, (c) Pickup by time and
tenure.
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c. Variation in Pickup by New Farmer Dummy for 91 Treatment Arms

Notes: Panel (a) illustrates the distribution of the length of the farmers’ tenure with the service. Panel
(b) shows the starting month with the service for the sample. For Panel (c), we split the sample into two
groups based on their length of tenure. The new farmer dummy takes a value of 1 if the length is lower or
equal to the mean length of 516 days and 0 otherwise.
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Figure A6: Process of Cross-Fitting on Data (No. of Folds=4).

Notes: The figure on the left shows the process of splitting the sample into four folds. The figure on the
right shows that the same data is not used for estimation and evaluation. To predict the pickup for the
farmers in fold four, the engagement data for farmers in the remaining three folds are used. The same step
is repeated for the other three folds.

Figure A7: Calibration Plots for LASSO by Farmer Covariates
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b. Male Farmers
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c. Small Landowners

0.00

0.25

0.50

0.75

1.00

0.
00

0.
25

0.
50

0.
75

1.
00

Means of true outcome within intervals

M
id

po
in

ts
 o

f i
nt

er
va

ls
 o

f p
re

di
ct

ed
 p

ic
ku

p

d. Large Landowners

Notes: Panel (a) shows the calibration plots between the true and predicted outcome for the female farmers.
Panel (b) shows the calibration plots for the male farmers. Panel (c) shows the calibration plot for the
small landowners whose land size is below or the same as the 25th percentile of the land-size distribution.
Panel (d) shows the calibration plot for large landowners. Large landowners are defined as those farmers
whose land holding is above 25th percentile of the land-size distribution.

49



Figure A8: Repeat Calls from the Call Center

Notes: This figure illustrates the process of follow-up calls from the call center. If the farmer does not pick
up the call on the first attempt, the call center makes a call exactly 24 hours after the first call. Moreover,
if the farmer does not pick up the call on the second attempt, the third call is made 24 hours after the
second call.

Figure A9: Impact of Targeting First Call on Overall Farmer Engagement: Off-Policy
Evaluation
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Notes: The training and evaluation data for estimating the value of π̂ counterfactually and the uniform
policy uses the uniform randomization data for week 1 and week 2. We estimate π̂ on the first calls for
the two weeks of data using cross-fitting (following Algorithm 1) and counterfactually evaluate π̂ using
the estimator defined in Section 6.2. We estimate V̂ Off(π̂,SU,1,2), where the outcome changes to the total
pickup for call 1, call 2 for second pair of bars. The evaluation dataset for the π̂ group corresponds to the
subset of people whose actual assignment matched the first call π̂. We estimate V̂ Off(π̂,SU,1,2,3), where
the outcome changes to the overall pickup for call 1, 2, 3 for right most pair of bars.
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C Power Calculations

This section provides an outline of the power calculations that we did before starting the

multistage experiment. The goal of this exercise is to assess the minimum detectable effect

for the off-policy and on-policy evaluations that we intended to do for each week. For

each N , we estimate the minimum detectable effect for the differences in the estimate of

the value of targeted policy and uniform policy under off-policy and on-policy evaluations.

For the off-policy evaluation, let us assume that 900,000 farmers are allocated to uniform

randomization in a week. This implies about 1/91 × 900, 000 would be receiving calls as

per the targeted policy under the uniform randomization data (refer to simplified setting

in Section 6.2 for details on the fraction). Varying the sample size for those getting called

according to π̂ and those according to the uniform policy, we illustrate the relationship

between the minimum detectable effect and the sample size. Figure A10 shows that under

the sample sizes close to the ones we see in our project, the MDE for off-policy evaluation is

much higher than the MDE for on-policy evaluation. This is happening as we can allocate a

higher sample size (250,000) to receive calls according to the targeted policy under on-policy

evaluation.

Figure A10: Power Calculations
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a. Off-Policy Evaluation
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b. On-Policy Evaluation

Notes: Panel (a) shows the relationship between the MDE and sample size for the off-policy evaluation.
Panel (b) shows the relationship between MDE and sample size for the on-policy evaluations.
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D Simplified Setting

D.1 Off-Policy Evaluation

The concept of off-policy evaluation can be explained using a simplified setting with four

treatment arms and two covariates. Assume two uniformly distributed covariates X =

[X1,X2] and the outcome variable is Y . Let there be only four treatments (W1,W2,W3,W4).

The two policies U and π̂ are defined below.

U =



W1, p = 0.25

W2, p = 0.25

W3, p = 0.25

W4, p = 0.25

π̂ =



W1, x1 > 0.5, x2 > 0.5

W2, x1 > 0.5, x2 < 0.5

W3, x1 < 0.5, x2 < 0.5

W4, otherwise

Under the uniform randomization, every individual could be allocated to any of those

four treatments with a 0.25 probability. Under the targeted policy, individuals in the top left

quadrant, top right quadrant, bottom left quadrant, and bottom right quadrant would be

assigned to treatment W4, W1, W3, and W2, respectively (Figure A11). Because of uniform

randomness, N
No. of arms

individuals under the uniform randomization are actually assigned

to the treatment arm they would have received if the targeted policy π̂ was deployed. Those

individuals are highlighted using blue points in the figure, and they would be the treated

individuals in the off-policy evaluation.

Figure A11: Off-Policy Evaluation: Simplified Setting
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Notes: Data is collected using the uniform randomization, where probability of allocation to each arm is
0.25. 25% of farmers get the same assignment under U as they would have received under π̂ (blue points).
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D.2 On-Policy Evaluation

Using the same simplified setting with two covariates, we illustrate graphically the concepts

of on-policy evaluation used in this study. Figure A12 illustrates the policy for the above

setting. The difference in expectation for the subset of individuals who should getW1 based

on π̂ is obtained by comparing the outcomes for the upper right quadrant in the uniform

policy group and the targeted policy group. In other words, the covariate space is kept

the same and only the policy is varied between the two groups. Similarly, the differences

can be computed for the other arms. Additionally, the overall benefit of deploying π̂ over

uniform policy can be computed by comparing outcomes in Panel (a) with the outcomes

in Panel (b).

Figure A12: On-Policy Evaluation: Simplified Setting
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Notes: Here, individuals are randomly allocated between the group that receives the treatment according
to π̂ (left) and uniform randomization (right).

E Estimated Policies: Implementation Phase

In this section, we provide details on the implementation phase of the targeted policies.

While collecting the data using the uniform randomization, we simultaneously developed

the technology for deployment of targeted policies. The goal of this exercise was to test

the technological constraints with the advisory system and update the targeted policies

according to our learning. For the second week, we estimated and evaluated a crude policy

(π̂A), where the treatment arms were morning, afternoon, and evening trained on uniform

randomization data in week 1 (refer to Figure 1).
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Next, as we collected more data using the randomization between 91 call times for

additional weeks, we updated the policy (π̂B) to take into account the hour of the call along

with the day of the week. We could only test the updated policy for a limited number of

days for the week of November 1st to 7th (week 4) because, during this week, the call center

only operated for five days instead of seven (this week had two major festivals, Diwali and

Bhai Dooj). Next, we tested another intermediate policy (π̂C) in week 5. This was the first

week that we could implement the targeted policy with 91 treatment arms for all seven days.

However, during this time, we were also trying to learn about the capacity constraints and

bandwidth limits for the call center. We deployed and tested the intermediate policy for

week 5 but with tighter constraints. For the last week, week 6, we deployed the policy for all

seven days and relaxed the constraint further to accommodate additional farmers in their

best-predicted call times (π̂D). Ideally, we would want to implement a few more targeted

policies taking into account the possibility of shocks, but we used off-policy evaluation to

estimate and evaluate those additional policies. We only had time to deploy a few limited,

targeted policies during the six weeks.

Table A2: Implementation Phase (Week 2)

Data
Collection
Method

π̂A Uniform
Policy

Difference

All 0.3030 0.3178 -0.0148
[0.0009] [0.0006] [0.0011]

N 265,188 616,656
Notes: This table shows the on-policy evaluation for π̂A in week

2. The farmers are randomized between two groups. Group A

gets called according to π̂A and group B gets called according to

uniform randomization. Sample means are used to estimate the

value of V (π̂A,Seval) and V̄ (U ,SU ).
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Table A3: Implementation Phase (Week 4)

Data
Collection
Method

π̂B Uniform
Policy

Difference

All 0.3125 0.3172 -0.0047
[0.0011] [0.0006] [0.0013]

N 167,995 707,644
Notes: This table shows the on-policy evaluation for π̂B in week

4. The farmers are randomized between two groups. Group A

gets called according to π̂B and Group B gets called according to

uniform randomization. Sample means are used to estimate the

value of V (π̂B ,Seval) and V̄ (U ,SU ).

Table A4: Implementation Phase (Week 5)

Data
Collection
Method

π̂C Uniform
Policy

Difference

All 0.3133 0.3195 -0.0063
[0.0011] [0.0006] [0.0011]

N 234,276 624,801
Notes: This table shows the on-policy evaluation for π̂3 in week

5. The farmers are randomized between two groups. Group A

gets called according to π̂C and Group B gets called according to

uniform randomization. Sample means are used to estimate the

value of V (π̂C ,Seval) and V̄ (U ,SU ).

F Alternative Specifications

F.1 Functional Form of the Treatment Variables

For the main analysis, the treatment effects are incorporated as 91 treatment dummies

in our specifications. We estimate an alternative specification here. We define the hour

variable as a continuous variable and use a polynomial function. There are also seven

dummies, one for each day of the week. The model incorporates interactions of the hour

variable and its higher-order terms with the days of the week. The modified model is
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provided below.

logit(pij) = β1Xi + β2hourj + β3hour
2
j + β4hour

3
j + β5dayj + η1hourjdayj + η2hour

2
jdayj+

η3hour
3
jdayj + γ1Xihourj + γ2Xihour

2
j + γ3Xihour

3
j + γ4Xidayj + δ1Xihourjdayj+

δ2Xihour
2
jdayj + δ3Xihour

3
jdayj

(4)

The parameters of the model are estimated using LASSO. We do not penalize the coef-

ficients on the treatment variables, which include {β2, β3, β4, β5, η1, η2, η3}. For the other

coefficients, we choose a regularization parameter using cross-validation.

Here, we assess the out-of-sample prediction accuracy of this model using cross-fitting.

The sample is divided in K folds, and the prediction accuracy for farmers in fold k is

assessed by estimating the model parameters on all farmers except k. This is repeated

K times to estimate the predictions for farmers in every fold. The prediction accuracy

and model fit of this alternative specification is compared with Equation 1. The AUC is

comparable for the two specifications, 0.683. The ROC and calibration plots are provided

below.

Figure A13: Out-of-Sample Predictive Performance
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B. Calibration Plot

Notes: (a) shows the ROC curve for the out-of-sample prediction. The AUC is 0.683. (b) shows the
calibration plot of true and predicted pickup on the test dataset.
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F.2 Hierarchical LASSO

In this section, we estimate a hierarchical LASSO model. First, Equation 5 is estimated. In

this specification, the regularization parameters vary for the main effects and interaction of

the covariates with the treatment dummies. Additionally, a constraint is introduced such

that the penalty on the interactions is larger than the penalty on the main effects.

logit(pij) =Xiβ +
∑
j

δ1jHourj +
∑
j

δ2jdayj +
∑
j

γ1jXihourj+∑
j

γ2jXidayj +
∑
j

γ3jXihourjdayj (5)

The objective of the hierarchical LASSO is to minimize the following-

−l(θ,X, hour, day) + λ1∥β∥+ λ2∥γ1∥+ λ2∥γ2∥+ λ3∥γ3∥

s.t.

λ1 ≤λ2 ≤ λ3 (6)

We set up the optimization problem as stated in Equation 6 and solve for the regu-

larization parameters that minimize the objective and satisfy the constraint. The nloptr

package in R is used for optimal penalty parameters. The out-of-sample accuracy for this

specification is compared with the baseline model. The AUC is 0.68, which is comparable

to the AUC of the baseline specification, where we use the same penalty for all the variables

except the ones on the treatment dummies.

Next, the method is modified to allow for the regularization parameters to vary by

the degree of the polynomial terms and the interaction coefficients. The hour variable

in the above setup has polynomial terms of degree one, two, and three, and there are

interactions of the hour variable with day and other covariates. Consequently, there are

five regularization parameters λ1, ..., λ5, and the objective of LASSO is to minimize the

following.

−l(θ,X, T )+λ1∥β1∥+ λ2∥γ1∥+ λ2∥γ4∥+ λ3∥γ2∥+ λ3∥δ1∥+ λ4∥γ3∥+ λ4∥δ2∥+ λ5∥δ3∥

s.t.

λ1 ≤ λ2 ≤ λ3 ≤ λ4 ≤ λ5 (7)
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The penalty on the coefficients increases with the increasing degree of the interactions

of the coefficients with treatment variables. The out-of-sample accuracy of this model is

comparable to the one we estimated in Equation 1.

F.3 Matrix Completion for Historical Data

We describe the matrix completion exercise of the historical data in this section. Note that

the historical data for the experimental sample is available from July 2018 to September

2021. However, we do not have the historical engagement for every farmer for each of the 91

call times, as calls were scheduled in an ad hoc manner in the past. The non-missing entries

constitute about 49% of the total number of entries. Hence, a matrix completion algorithm

Figure A14: Nuclear norm penalty for the Matrix Completion on Past Engagement

a. Out of Sample R2 b. RMSE

Notes: (a) shows the R2 on the test data. (b) shows the RMSE corresponding to different values of the
nuclear norm penalty.

is needed to complete the past engagement matrix. The Soft-Impute algorithm described

in Mazumder et al. (2010) is used for the matrix completion exercise. This algorithm uses

nuclear norm regularization for matrix completion.

As described in Mazumder et al. (2010), the optimization problem for completing the

historical engagement matrix Yhistory is provided below. Note that the matrix Yhistory has

dimension N × J where each (i, j) element corresponds to the historical engagement of
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farmer i in call time j.

min
M

1

2
||PΩ(Yhistory −M)||2F + λ||M ||∗

, where ||M ||∗ is the sum of singular values of M and PΩ(Yhistory) is the projection matrix

with observed elements in Yhistory.

The regularization parameter is chosen using the following steps. The matrix elements

are split 80:20 into training and test entries. The non-missing entries in the training matrix

that are part of the test IDs are made NAs for this exercise. We choose several values of λ

and do the matrix completion using Soft-Impute. Both the R-MSE and out-of-sample R2

were computed for the test entries. The λ corresponding to the lowest R2 was chosen as

the optimal λ. Panels (a) and (b) of Figure A14 display these measures for the different

values of λ. The matrix completion exercise provides a 10% improvement over imputing

the missing entries with the mean of the matrix. The predicted past engagement is used

as a covariate for estimating and evaluating targeted policies on the uniform randomized

data.
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