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Abstract

We evaluate at scale the impact of a digital agricultural advisory service reaching
millions of smallholder farmers, in an eastern state of India. We randomized the
rollout of the service among 13,675 rice farmers within five districts, and measured the
impact on agricultural outcomes using both survey and remote sensing data. Using
survey data, we find that access to the digital service leads to significant improvements
in farmers’ knowledge and adoption of recommended practices, a modest increase in
rice yield and harvest, and a large reduction in the likelihood of rice crop loss on
average. Further analyses suggest that the treatment impact is concentrated in areas
hit by certain types of weather shocks, increasing harvest by up to 9% and reducing
severe crop loss by up to 21% in affected areas. We use vegetation indices (VIs) to
construct an objective yield measure for all farmers in the study sample and confirm
that our key survey results are robust against differential attrition, reporting biases,
and survey sample selection. While the VI-predicted yield provides valuable validation
of survey results, our analysis highlights the need for methodological improvements
in the effective application of remote sensing data to measure program impacts on
agricultural outcomes.
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1 Introduction

Smallholder farmers represent a significant portion of the global population living in poverty,
with many subsisting on less than US$2.15 per person per day (Fu and van Nieuwkoop 2023).
These farmers face persistently low agricultural productivity and increasing production risks
from climate variability, which adversely affect their livelihoods and contribute to food in-
security. For instance, estimates indicate that maize yields of smallholders in sub-Saharan
Africa (Koo 2014) and rice yields in some regions of India range between 25% and 50% of
their potential (Das 2012).

While farmers in low- and middle-income countries (L&MICs) have a depth of knowledge
passed down by generations, they often do not have access to modern science-based agricul-
tural information (Fabregas, Kremer, and Schilbach 2019) or localized weather information
(Fabregas et al. 2023; Rosenzweig and Udry 2019) to optimize their farming decisions. Their
adoption of profitable and risk-reducing technologies has remained low, especially in Africa
and South Asia (Ashraf, Giné, and Karlan 2009; Duflo, Kremer, and Robinson 2011; Evenson
and Gollin 2003; Mobarak and Rosenzweig 2013). For instance, hybrid maize seed varieties
can increase average yields and improve resilience to weather shocks but have been adopted
by fewer than half of the sub-Saharan African farmers (Bird et al. 2022). A flood-tolerant
rice variety has been shown to dramatically reduce the risk of crop loss under submergence
and lead to large yield gains in flood-prone areas of Eastern India. Yet the adoption rate
remained at merely 10% five years after the introduction of the variety (Janvry, Rao, and
Sadoulet 2022).

Agriculture extension services have long been supported by policymakers and practi-
tioners as a strategy to encourage the adoption of modern agricultural inputs and practices.
However, it is well-documented that traditional public in-person extension services often lack
resources and accountability, thereby limiting their reach and impact (Anderson and Feder
2004; Cole and Fernando 2021; Fabregas et al. 2023). Studies estimate that the farmer-to-
extension worker ratio exceeds 1,000:1 in many L&MICs (Fabregas, Kremer, and Schilbach
2019), including in India (Nandi and Nedumaran 2022). With advances in information and
communication technologies (ICTs) and the rapid growth of mobile phone ownership, many
governments are now integrating ICTs into their agricultural extension programs (Aker 2011;
Aker, Ghosh, and Burrell 2016; Fabregas, Kremer, and Schilbach 2019). A growing body of
empirical evidence suggests that agricultural extension via mobile phones can increase the
adoption of new or unfamiliar technologies, but that their effectiveness varies across prod-
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ucts, initiatives, and contexts as one would expect (Abate et al. 2023; Spielman et al. 2021).
Importantly, few studies have evaluated the impact of a scaled service reaching diverse farmer
populations.

This study evaluates the impact of an agricultural advisory service that provides timely
and localized agricultural information via mobile phones to millions of rice farmers in Odisha,
India.1 The service, called Ama Krushi, is a free, two-way voice-based platform that delivers
regular audio messages with agricultural advice, and offers an automated hotline that farmers
can call to record agricultural questions and receive recorded answers within a few days.
Advice is tailored to the data collected during service-registration phone calls, which include
farmers’ primary crops, geography, and land type, as well as the data collected from hotline
reports of other local conditions, such as weather events and field problems.

One persistent challenge in disseminating targeted information and advice to smallholder
farmers at scale is the need for local and real-time information to make the content suffi-
ciently relevant for diverse farmer populations. Remote sensing (satellite imagery) would
be a potential source of real-time information, but few organizations have the capacity to
analyze and monitor such data. Similarly, converting meteorological weather forecasts to
agriculture-relevant weather forecasts, and offering specific agricultural practice recommen-
dations, may be too complex a task for many governments or farmer-facing organizations.
Because information goods for low-income households are difficult to monetize, existing ser-
vices tend to be highly customized for a small user base (often offered as fee-for-service by a
private service provider or set up as a small-scale program with government or philanthropic
funding) or operated at scale with limited scope for customization. The service evaluated in
this study was designed to strike the balance where the information content was customized
based on a small number of farm characteristics that are easy to collect, and regularly re-
viewed and dynamically updated by government agronomists based on available information
on weather and field conditions.

Our study took place in five districts where the service had not yet been made widely
available in 2021. We identified study participants with a random-walk sampling approach,
recruiting 13,675 rice farmers across 18 blocks in two phases. This comprised 5,204 farmers
before the main agricultural season in 2021 (Cohort 1) and 8,471 farmers before the main
agricultural season in 2022 (Cohort 2). We recruited farmers who intended to grow rice and
were interested in a phone-based advisory service. In each cohort, 50% of the farmers were

1. The service was developed by a non-profit organization, Precision Development (PxD), in collaboration
with the Odisha state government, and and was transferred to the government in 2023 as part of the design.
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randomly assigned to the treatment group and invited to register with the digital extension
service, while the remaining 50% served as a control group. Primary plot boundaries were
collected from all farmers in both cohorts to assess the program impact using satellite-based
yields; two rounds of follow-up survey data on agricultural practices and outcomes for the
main agricultural season (Kharif) were collected from Cohort 1 farmers.

Three sets of findings emerge from our analysis of survey data from two main agricultural
seasons in 2021 and 2022. First, the majority of treated farmers successfully engage with
the service: while the proportion of engaged farmers slightly declines from 94% to 84% in
the two years, the intensity of service usage among engaged farmers is sustained over time.
In the first Kharif season, an average treated farmer picked up 55% of the advisory calls,
listened to 52% of content conditional on picking up the call, and spent approximately 28
minutes on the platform. In the second Kharif season, among the 84% of treated farmers
who continued to use the service, the average listening rate remained similar at 56%. These
patterns suggest a sustained demand for local agricultural advisory in this population.

Second, access to digital advisory improves agricultural knowledge, practices, and pro-
duction outcomes. We observe improvements in knowledge and adoption behavior across
8-14 practices, with approximately 0.05-0.1 standard deviation increases in the summary
indices in both years. This leads to average per-season increases in rice yield (harvest per
unit of land) by 1.74% over the control mean and harvest by 4.12% over the control mean.
The estimated effect on harvest is robust to multiple hypothesis corrections in the second
year and when the data are pooled between the two years. These point estimates are in
line with the existing evidence of the impact of digital agricultural information services. For
instance, a meta-analysis across seven digital agriculture programs in Asia and Africa shows
a 4% increase in yield, on average (Fabregas, Kremer, and Schilbach 2019).

Third, the service helps farmers cope with some (but not all) weather-related shocks. In
the second year, in which we collected data on crop losses, treated farmers reported lower like-
lihoods of experiencing any rice crop loss and severe rice crop loss.2 These effects are driven
primarily by a 10% reduction in the losses that are due to weather-related events, including
pests and diseases. We further investigate the impact on resilience to weather shocks by esti-
mating the heterogeneous treatment impact by the presence of major weather events during
the evaluation period, which we identified using daily rainfall data and government records
on rice field damage due to weather events. While the analysis of heterogeneous treatment
effects largely generates imprecise estimates after multiple hypothesis adjustments, three sets

2. We define severe rice crop loss as losing more than half of the rice crops.
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of results are worth highlighting. First, we observe consistent, positive effects on agricultural
outcomes in areas hit by concentrated, excess rainfall that caused submergence in 40% of
study blocks in the first year. Point estimates indicate a 6.8% higher yield and a 9% higher
harvest by treated farmers than control farmers in these shock-affected areas. While the
increase in yield does not survive multiple hypothesis adjustments, the effect on harvest is
statistically significant at 10% after adjustments, and is robust to varying thresholds we
use to identify areas hit by excess rainfall. Second, the reduction in severe crop loss in the
second year appears to be concentrated in areas that received inadequate rainfall during
the growing season, showing a 21% reduction in the likelihood of severe crop loss among
treated farmers compared to control farmers in those areas (significant at 1% after multiple
hypothesis adjustments). Third, the service does not help farmers cope with every shock.
The treatment impact in areas hit by sudden river flooding in the early growing season of
the second year is close to zero across all agricultural outcomes.

To shed light on the impact of digital service on farm incomes, we collected data on
rice production costs and sales of harvested rice from a subset of farmers in the first year.
Agricultural profits are well-known to have a large variance and a distribution with very
long tails (Baul et al. 2024; Okorie, Afuecheta, and Nadarajah 2023). This study was not
designed to measure profit impact with precision3, but the analysis could still offer useful
insights on plausible impact. Overall, the pattern of treatment impact estimates on profits
corroborate the observed effects on total rice harvest: a small, positive point estimate for
the full sample and a large point estimate for areas hit by excess rainfall. We take these
results as suggestive of increased net profits for treated farmers in areas affected by excess
rainfall. Our back-of-the-envelope calculations on cost-effectiveness using these imprecise
estimates on profit impact corroborate other studies that show that the marginal benefits
of digital advisory services can be an order of magnitude larger than the marginal cost of
service delivery (Baul et al. 2024; Fabregas et al. 2023).

A second objective of this study is to explore the potential of using remote-sensing data to
measure yields and examine treatment impacts. Key constraints to measuring the impact of
interventions on agricultural outcomes include, again, the large variances of outcomes across
individuals and seasons, and the reporting biases and attrition issues when using self-reported
measurements. A potential solution to these challenges is the use of satellite data, which
faces limited to zero attrition, provides more objective measures that are free from reporting

3. In our setting, ex-ante power calculations suggested that we would have needed a survey sample that
is an order of magnitude larger to precisely capture the impact on profits.
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bias, and offers outcome measurements over a long time horizon (Campolo et al. 2022; Jain
et al. 2016; Jain et al. 2019; Lobell et al. 2019). We collected primary rice plot boundaries
from all 13,675 farmers in the study, using a GPS device at baseline, to extract vegetation
indices; we also collected 1,247 crop-cut (CCE) yields over two agricultural seasons (Kharif
2021 and 2022) as the “ground truth” data. We model the relationship between vegetation
indices and CCE yields using machine learning methods, and then use this prediction model
to estimate rice yield for the full study sample for the two post-intervention Kharif seasons.

We use the predicted satellite-based yields for three purposes. First, we show that survey
results are robust against differential attrition by testing whether the post-intervention yield
predicts follow-up survey attrition and whether this correlation differs by treatment status.
Second, we show that survey results are not influenced by selection of unobserved charac-
teristics. Estimated treatment effects on VI-predicted yield are comparable across different
analysis samples and the full study sample, which addresses the concern that survey results
with a 20% attrition may be influenced by selection into completing surveys. Third, we
examine whether the VI-predicted yield can measure the program’s impact on a farmer’s
primary rice plot. Using the full study sample, we observe a positive treatment effect on VI-
predicted yield in the first year and a null effect in the second year. Further analysis shows
that the VI-predicted yield and the self-reported yield generate consistent impact estimates
when using the same plot measurement (i.e., GPS-based plot size measured at baseline),
but not when self-reported yield is measured using the area of cultivation reported in the
follow-up survey. These results identify a new challenge in using remote sensing data to mea-
sure program impact on agricultural outcomes for annual crops: one would need updated
measurements of cultivation areas across seasons to accurately predict agricultural outcomes
over time.

This paper makes contributions to four strands of literature. First, this study expands
the evidence base on the impact of digital agricultural extension services in three ways. Many
studies in this literature investigate the use of digital tools in increasing the adoption of one
or a few agricultural practices. For instance, Dzanku et al. (2020) examine the impact of
video documentaries and radio listening clubs on the adoption of an inoculant in Ghana;
Arouna et al. (2020) study the impact of a mobile app on the usage of inorganic fertilizer in
Nigeria; Fabregas et al. (2025) conduct a meta-analysis of six studies evaluating the impact of
SMS messages on the application of lime and fertilizer in East Africa; and Abate et al. (2023)
study the impact of a video-mediated extension on three practices for cereal crop cultivation.
The service evaluated in this study provides advice on a wide range of agricultural topics
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and relevant information throughout the course of the season, making the service relevant
for potentially more diverse farmer groups. The closest to our study is Cole and Fernando
(2021), who examine the impact of a voice-based advisory service — the original service
upon which the design of Ama Krushi was based and improved — among cotton farmers in
Gujarat, India.

Second, our findings add to a small but growing evidence base on the impact of informa-
tion services on climate adaptation in L&MICs. An earlier study by Fafchamps and Minten
(2012) finds that output market price information and weather forecasts provided via mobile
phones to Indian farmers have no impact on their cultivation practices, crop losses, or crop
sales. More recently, experimental evaluations on weather forecasts show that precipitation
forecasts help farmers optimize labor allocation (Yegbemey, Bensch, and Vance 2023); and
improved monsoon onset forecasts influence farmers’ crop choice and agricultural investment
(Burlig et al. 2024). Our results suggest that a customized advisory service that responds
to farmers’ diverse information needs could help them cope with adverse weather events,
thereby reducing the likelihood of severe crop losses.

Third, only a handful of studies have evaluated a digital agriculture program that has
reached scale. Studies included in the meta-analysis conducted by Fabregas et al. (2025)
reach several hundred thousand farmers; Baul et al. (2024) examine the impact of a video-
based extension program that reaches two million farmers in India. Our study evaluates the
impact of a public digital advisory service that was reaching nearly 3 million farmers by the
end of the evaluation and is now reaching over 6 million farmers in an Indian state. The
key value proposition of digital information services is their ability to reach scale at a low
marginal cost. Understanding the impact of these services at scale beyond well-managed
research and pilot program settings offers important insights for policy.

Lastly, this paper advances the literature on the use of remote sensing data in impact
evaluations (Cole et al. 2025; Jain et al. 2019; Jain 2020; Kubitza et al. 2020). The use of
satellites in estimating agricultural yield has been well established in the Global North, but
its application in the smallholder context is relatively new (Burke and Lobell 2017; Guo,
Chamberlin, and You 2023; Jain et al. 2016; Lobell et al. 2019). We predict rice yield for
smallholder farmers in India, whose plots are approximately 0.1 hectare on average, and
obtain performance levels that are at par with previous studies with larger plots. While our
findings point to the effective use of VI-predicted yield to assess the validity of survey-based
impact estimates in an RCT, they also highlight key challenges in using the predicted yield
to capture the program impact.
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The remainder of this paper is organized as follows. Section 2 provides a general context
of the digital agricultural extension service and describes the specific service evaluated in this
study. Section 3 describes the setup of the experiment and data used for analysis. Section 4
presents the empirical strategy adopted. Section 5 illustrates the findings from the service
data and survey data and Section 6 shows the findings from the remote sensing data. Section
7 discusses the benefit-cost ratio of the digital service and its policy relevance. We conclude
in Section 8.

2 Context and Intervention

2.1 Study context

India has been at the forefront of the digital revolution, with its significant investment
in developing digital public infrastructure to integrate digital technologies in public-sector
services. The most prominent example is Aadhar, the biometric identification system, which
streamlined access to public services and welfare programs. In the agricultural sector, the
digitization effort was largely decentralized until recently. While a nationwide toll-free call
center (called “Kisan Call Center”) has been available for real-time advice to farmers who are
aware of the service, digital agricultural extension initiatives have been primarily developed
and executed by state-level extension offices.

In Odisha, where this study took place, the state government largely relied on the net-
work of public extension agents to disseminate information to farmers, with limited use of
digital technologies, before Ama Krushi was launched in 2018. At the time of the study,
roughly 4,900 village agricultural workers, agricultural supervisors, and Assistant Agricul-
tural Officers (AAO) served over eight million farmers in the state. This means that the
majority of farmers had no interaction with extension agents. In fact, only 25% of farmers
in the study sample reported seeking agricultural information from government extension
agents, and 5% reported using mobile phones or internet to seek agricultural information
at baseline whereas the wireless teledensity of the state was 62.25% in 2020 (Planning and
Convergence Department, Directorate of Economics and Statistics 2021). The majority of
the farmers identified other farmers and agrodealers as their main information source.

Adoption of modern inputs, and hence yield levels, among rice farmers in the state has
remained low. The state average yield of 2,068 kg/ha in 2019-2020 is far below the national
average of 2,705 kg/ha (Planning and Convergence Department, Directorate of Economics
and Statistics 2021). Additionally, being a coastal state, Odisha is highly prone to natural
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calamities. Since 2010, the state has been hit by at least one extreme weather event ev-
ery year, including floods, cyclones, and droughts (Planning and Convergence Department,
Directorate of Economics and Statistics 2023). With the high incidences of these weather
events, adapting agricultural practices to improve plant resilience to shocks becomes increas-
ingly important.

2.2 Intervention

Ama Krushi is a two-way, voice-based platform that delivers weekly audio messages to farm-
ers and allows them to call in for free, record questions, and receive recorded responses from
local agronomists. The service covers a wide range of agricultural topics, from land prepara-
tion and seed varietal selection to appropriate application of fertilizer and other inputs, and
post-harvest management. Farmers also receive relevant, non-agronomic information, such
as government schemes targeting agricultural households and minimum support prices for
main agricultural crops.4

In addition to standard agronomic advice, three key features of Ama Krushi may help
farmers navigate dynamic weather and market conditions. First, the service utilizes publicly
available weather information to optimize the timing of advisory messages and provide real-
time advice on both preventive and mitigation actions. For instance, advice on sowing is
timed to arrive after sufficient rainfall is observed: in cases of delayed monsoon, farmers
receive advice to wait until sufficient rainfall is observed. When cyclone alerts are issued
by the Indian Meteorology Department (IMD), farmers in at-risk areas receive an alert
with advice on how to protect their crops. While farmers can, in theory, access weather
information used in this intervention (via the IMD or government website on realized rainfall
at the sub-district level), internet access in rural areas is still limited even among smartphone
users. More importantly, even if farmers had access to the weather information, it is rarely
communicated in a way that is easily usable for agricultural decision-making.

Second, advice on inputs and management practices is customized by land type and
sowing method, in addition to geography. For instance, advice on stress-tolerant seeds
depends on both farmer location and land type: this is important in areas that face both flood
and drought risks.5 The majority of farmers in Odisha grow nursery plants and transplant,
instead of broadcasting rice seeds. Because of the more complicated technology, farmers who

4. The national government sets the minimum support prices for key staple crops every year, and the
state government decides how much to procure at these prices.

5. Flood-tolerant seeds are not recommended for farmers cultivating in highland areas; whereas drought-
tolerant seeds are not recommended to lowland farmers.
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transplant seedlings receive more messages, including advice on the timing of transplanting.
Third, weekly advice is dynamically customized based on the common problems reported

via the hotline. If many farmers asked questions about the same problem in a short window
of time (e.g., specific pests, excess or scarce rainfall, or market prices), Ama Krushi would
push out advisory messages to all farmers in relevant areas about how to tackle that specific
problem. This addresses one of the biggest challenges in providing customized agricultural
advice at scale: lack of sufficiently local and timely data on agricultural problems faced by
farming communities. While the hotline service by itself can partially address this challenge,
farmers with low digital literacy may not use the interactive voice response (IVR) system to
record questions. In fact, in the first intervention season of this study, only 4% of treated
farmers submitted a question to the platform.6 The ability to broadcast advice based on
commonly asked questions (albeit submitted by a small set of farmers who have higher
digital literacy) allows temporal and geographic customization of advice for a large number
of farmers.

Importantly, Ama Krushi was designed to reach a very large scale at low cost. The
advisory was set up as a state government’s service in 2017 but initially operated by Precision
Development (PxD), a non-profit organization specializing in delivering information services
to smallholder farmers at scale. It was fully transitioned to the state government in 2022.
At the time of the handover, Ama Krushi was reaching 2.7 million users in the state at the
cost of US$0.37 per farmer per year. By the end of 2023, the user base has grown to 6.9
million farmers.

3 Experimental Design and Data

3.1 Study sample and recruitment

To measure the impact of Ama Krushi, five out of 30 districts in the state were set aside from
the state-wide rollout plan in the early phase of the program. We listed 21 eligible blocks
out of 72 across these five districts, which had a low proportion of rural households already
registered for Ama Krushi service and showed low cloud coverage in satellite imagery in the
2019-2020 Kharif season. Within those blocks, we then identified all rural villages that both
had more than 50 households according to the 2011 Census and were located in a panchayat

6. The limited usage of the Q&A feature is a common pattern. Based on the platform monitoring data of
this digital service, in 2022, only 2.17% farmers who called into the service platform asked a valid agricultural
question.
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(an administrative unit above the village level) with service penetration below 10%. A total
of 1,313 or 39% of the villages met these criteria.

To construct the sample of rice farming households for the study, we used a random
walk approach and identified agricultural households that engaged in rice farming, owned a
mobile phone, and were interested in receiving a free digital agricultural advisory service. In
addition, recruited farmers were asked to provide consent for the enumerator to collect the
GPS data on the boundary of their primary rice plot, defined as the largest rice plot within
30 minutes by foot from their house.

Due to the global pandemic in 2020-2021, baseline data collection was interrupted several
times, resulting in recruitment of the final sample of farmers in two waves over one year.
We recruited 5,204 farmers across 15 blocks into the study before the Kharif season in 2021
(Cohort 1 farmers) and additional 8,471 farmers across 16 blocks later in the same year
(Cohort 2 farmers). This resulted in the final study sample of 13,675 farmers across 18
blocks. The timeline of farmer recruitment and other evaluation activities is presented in
Figure 1.

3.2 Randomization

Recruited households were randomly assigned to the treatment or control group with equal
probability. Randomization was stratified by panchayat, baseline survey version7, self-
reported yield at baseline (above the panchayat median or not), and (for Cohort 2 only)
GPS-measured plot size at baseline (above the panchayat median or not). Overall, baseline
characteristics between the treatment and control groups are well balanced. Out of 36 tests
comparing sample means for the treatment and control groups as shown in Table 1, only
two variables for Cohort 1 farmers — primary rice plot yield and having received baseline
survey compensation before the intervention — and no variables for Cohort 2 farmers, are
significantly different at the 90% confidence level.

The criteria to survey the primary or secondary agricultural decision maker in the house-
hold selected through a random-walk sampling approach resulted in a sample predominantly
consisting of male farmers who are household heads. The majority are literate and have
some formal education. Smartphone ownership was still limited at the time of the baseline
survey. Between the two cohorts, 59-67% had a feature phone as their primary phone, and
only 40% were the sole owner and user of their primary phone, suggesting that most phones

7. In the baseline survey, half of the sample were randomly selected to be asked about their agriculture
knowledge, while the other half were asked about their agricultural practices.
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were shared within the household.
Rice is the main crop grown in the Kharif season for nearly all farmers (94-96%), with

an average cultivation area of 0.9-1 hectare. Agricultural plots in this region are highly
fragmented: farmers cultivate rice on multiple small plots (Das 2012; Rice-based Cropping
Systems, n.d.). The primary rice plot is on average 0.14 hectares and accounts for less
than 15% of the total cultivation area at baseline. This means that an average farmer
cultivates more than five parcels of land. The average of farmers’ self-reported total rice
yields in the Kharif 2020-2021 season are 2,952 kg/ha and 3,246 kg/ha among Cohort 1 and
2 farmers, respectively, somewhat higher than the state average of 2,730 kg/ha (Planning
and Convergence Department, Directorate of Economics and Statistics 2021). The average
profits are Rs 10,165 (US$137) for Cohort 1 farmers and Rs 8,366 (US$113) for Cohort 2
farmers — obtained by multiplying the reported harvest with the panchayat-level median
sales price minus the reported production cost.

3.3 Data

We use three sets of data to examine the impact of the digital advisory service.
First, we collected three rounds of survey data. The baseline survey was conducted in

person with all farmers in both cohorts in 2021; and two rounds of follow-up data were col-
lected from Cohort 1 farmers only. In both follow-up surveys, we randomly assigned whether
a farmer was contacted by phone or in-person, and switched survey modality after a spec-
ified number of unsuccessful contact attempts in order to maximize response rates.8 The
first (midline) follow-up survey, conducted in early 2022, collected data about the first inter-
vention season (Kharif 2021). We gathered data on agricultural practices, rice cultivation,
and harvest from the full sample, and data on agricultural knowledge, rice sales, revenues,
and production costs from a subset of farmers that received an in-person survey. The sec-
ond (endline) follow-up survey, conducted in early 2023, collected data about the second
intervention season (Kharif 2022). In addition to the data on rice cultivation and harvest,
we asked about the incidents of rice crop loss and reasons for losses. Data on agricultural
practices were collected from a subset of farmers that received an in-person survey.

Second, we use the administrative data on service usage to assess how farmers engaged
with the service and what types of agricultural information they accessed. The service
platform data contains records of all communications with users, including registration survey
responses, when farmers picked up advisory calls, for how long they stayed on the line, and

8. Details of the survey modality assignment are described in Appendix B.
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whether they called into the hotline and successfully asked questions.
Third, we extract Sentinel-2 satellite imagery between 2020-2022 and obtain vegetation

indices for the primary rice plots of all farmers in the study, based on the plot boundaries
collected at baseline. These vegetation indices enable us to estimate rice yield for the entire
study sample, without attrition, using a yield prediction model which we developed from a
separate crop cut dataset collected in 2021 and 2022 from 1,247 farmers in the study blocks.

3.4 Key outcomes

The main outcomes of interest include farmers’ agricultural knowledge, adoption of recom-
mended practices, and rice crop production. This study was designed to detect 2-3 percent-
age point improvements in agricultural knowledge and adoption, using the survey data from
5,204 Cohort 1 farmers, and a 3 percent increase in yield, using the satellite-based yield of
the full sample of 13,675 farmers.

To measure agricultural knowledge and adoption of recommended practices, we asked
a local agronomist, in consultation with experts from agricultural research institutions, to
identify key practices before the intervention, and we collected data on those individual prac-
tices at each survey round.9 We then create inverse covariance weighted summary indices,
following Anderson (2008), by aggregating knowledge responses for the knowledge index and
reported behaviors for the adoption index. To measure yield and harvest, we use self-reported
production and area of cultivation in each survey round. Agricultural outcomes are known
to be noisy and have a distribution with very long tails (Baul et al. 2024; Okorie, Afuecheta,
and Nadarajah 2023).

Additionally, we construct measures of profits from data on production costs and rice
sales, that we gathered from a subset of farmers who received an in-person survey at midline.
The average farmer in our sample sells 35% of harvested rice; the rest is probably stored and
consumed by the household over time. Our primary profit measure is imputed, to include
revenue from sales and the value of the unsold harvest at the panchayat-median sales price,
from which we subtract the total spending on variable production cost items (as outlined
in the preanalysis plan, PAP); we also report results using two alternative measures in the
appendix. The first of these alternatives improves the precision of the profit measure by
taking winsorized cost items (instead of raw values) to create a measure of harvest cost.
As discussed later, this improves the precision of impact estimates without substantially
influencing point estimates. The second alternative values the unsold harvest at the retail

9. The detailed description of each practice is listed in the Appendix Table A3.
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price of rice in Odisha in 2021, or Rs 29 per kg, based on publicly available price data
(Consumer Affairs, n.d.). The median sales price in our survey data is Rs 14 per kg, or 50%
lower than the retail price, thus leading to meaningful differences in impact estimates.

We winsorize non-negative continuous variables, including the cultivation area, yield,
harvest, value of harvest, harvest cost and investment, at the 95th percentile, and the profit
measure at the 2.5th and 97.5th percentiles, to mitigate the influence of extreme outliers.

3.5 Survey attrition

A key concern in the analysis of survey data is the influence of survey attrition on estimates
of the treatment impact. There are two relevant issues. First, different types of farmers may
complete follow-up surveys between the experimental groups, resulting in biased treatment
impact estimates. Second, even in the absence of differential attrition by the experimental
group, farmers who respond to follow-up surveys may be systematically different from those
who do not. The comparison between the experimental groups still generates unbiased
impact estimates for those who complete the survey, but these estimates may be different
from the average impact of the full study sample population.

In Appendix Table A1, we show that 80% of Cohort 1 farmers completed at least one of
the follow-up surveys, and 66% completed both. Survey attrition is correlated with farmer
characteristics, but there is no differential attrition by treatment status. P -values of the
joint F -test across interactions between the treatment status and baseline characteristics are
0.495 and 0.228 for the midline and endline surveys, respectively. We investigate the second
issue — whether the selection into the survey sample results in impact estimates that are
substantially different from the average impact of the study sample in Section 6.3 — by
comparing impacts estimated using VI-predicted yield from the analysis sample and the full
study sample.

4 Empirical Strategy

We registered a PAP prior to the collection of the first follow-up survey.10 The empirical
strategies described below largely follow our PAP.11

We estimate intent-to-treat (ITT) effects for all key outcomes. When baseline values are
available, we use the ANCOVA specification; otherwise, we use the OLS specification. For

10. The study is registered in the AEA RCT Registry: AEARCTR-0008560.
11. We show additional analyses, such as robustness checks, that are described in the PAP but not presented

in the main paper in an online appendix.
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outcomes collected in both rounds of follow-up surveys, we estimate the effects separately
for each year and also the average effect over two years using the pooled data to increase
statistical power. Specifically, our main specification is as follows:

Yit = α + βTi + ψYi0 +X ′
i0δ + S ′

i0η + γs + ϵit, (1)

where Yit stands for outcomes of interest of farmer i in year t ∈ (1, 2), with t = 1 and 2
indicating the Year 1 (Kharif 2021) season and the Year 2 (Kharif 2022) season, respectively;
Ti is the treatment indicator; Yi0 is the pre-intervention value of the outcome measured at
baseline; Xi0 is a vector of exogenous control variables listed in Table 1; Si0 is a vector
of survey design variations including indicators for the survey modality, whether the final
survey modality is switched from the initial assignment, and the timing of follow-up data
collection; and γs represents the stratification block fixed effects. We use Huber-White robust
standard errors in analysis using a single round of follow-up data, and cluster standard errors
at the farmer level in analysis with the pooled data. To prevent loss of power from missing
values in the baseline outcomes and covariates, we substitute those missing values with the
median value within each block and cohort, and include an indicator for imputed values, as
pre-specified in the PAP.

We are also interested in exploring heterogeneous treatment effects. We estimate:

Yit = α + β1Ti + β2TiZi + ψYi0 +X ′
i0δ + S ′

i0η + γs + ϵit, (2)

where TiZi represents the interaction between the treatment indicator and the subgroup
variable of interest; other notation is the same as in Equation 1.12 Specifically, we consider
heterogeneous impact by agricultural yield measured at baseline and the weather shocks
identified ex-post using public weather data and government reports.

We correct for the multiple hypothesis testing within each category of key outcomes –
rice production, rice income, rice crop loss, and heterogeneity by weather shocks. We adjust
for the family-wise error rate using the bootstrap resampling method (Romano and Wolf
2016) and report both the “naive” p-values and Romano-Wolf step-down adjusted p-values
for specifications reported within the same table. We do not control for multiple hypothe-
sis testing for secondary outcomes, including adoption of individual practices, specific rice
production cost and investment items, and primary rice plot cultivation, as these represent

12. Because our subgroup variables of interest are all perfectly collinear with the stratification block fixed
effects, we do not control for Zi in this specification.
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exploratory analyses that aim to provide qualitative insights.

5 Empirical Results from Service Platform Data and Survey Data

5.1 Engagement with the advisory service

We start by summarizing the uptake and the usage of the Ama Krushi advisory service. Fig-
ure 2 plots kernel densities of the service engagement of Cohort 1 farmers over two Kharif
seasons. Consistent with statistics reported in Tables 2 and 3, nearly all farmers who were
assigned to the treatment group registered for the advisory service, and the majority of reg-
istered farmers engaged with the service and accessed agricultural content. The proportion
of farmers that engaged in the service declined between the two years from 94% to 84% of
Cohort 1 treated farmers, but the engagement level among those who used the service was
sustained. In the first year, as reported in Column (1) of Table 2, an average Cohort 1 farmer
spent a total of 27 minutes on the advisory platform, picking up 55% of 52 advisory push
calls and listening to the majority of the content in 24% of calls. In the second year, Ama
Krushi sent shorter calls in general, resulting in a 40% decline in the average time spent on
the service platform among Cohort 1 farmers, from 27 to 16 minutes. Farmers listened to
the majority of 21% of these calls, about the same as in the first year.

We note that treated farmers who consented to take follow-up surveys tend to be more
engaged with the service than those who did not (Column (5) in Table 2 and Column (7)
in Table 3). Since we do not observe engagement for the farmers in the control group, we
cannot test whether the treatment and control samples are balanced on engagement with (or
propensity to engage with) the service. If the farmers in the control group who participate
in the follow-up surveys were to have a higher propensity to engage with the service than the
control farmers who attrit from the sample, then our analysis sample provides an unbiased
estimate of the effect of the service on a selective sample of farmers with a higher propensity to
engage. While this impact is unbiased, it may be larger than the impact on the average farmer
population, which we examine further in section 6.2. If, however, the control group farmers
are comparable to the treated farmers on observables but different in terms unobserved
propensity to engage with the service, then estimated impacts could be biased up.

5.2 Intention to treat effects

We now turn to the average treatment impact on farmer behavior and agricultural outcomes
using the ITT analysis. The results reported in this section use the two rounds of follow-up
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survey data collected from Cohort 1 farmers.13

5.2.1 Impact on knowledge and adoption of recommended practices

Table 4 reports the ITT effects on knowledge (measured in Year 1 only) and adoption
of the core index — a subset of practices that are relevant for all farmers regardless of
their planting method — and the transplanting index — a broader set of practices that
are relevant for farmers who practice transplanting. Both indices are standardized with a
mean value of zero and a standard deviation of one in the control group. When estimating
effects on the core index, we limit the analysis sample to farmers who planted rice in a
given season, and when studying the transplanting index, we further restrict to farmers
who reported transplanting rice at baseline (roughly 85% of Cohort 1 farmers). Overall,
treatment has robust, positive effects on farmer’s knowledge and self-reported adoption of
recommended practices in the first year. Access to the digital advisory service improves
agricultural knowledge by 0.11 SD and agricultural practices by 0.068-0.098 SD. In the
second year, the average impact on agricultural practices as measured by the core index
becomes somewhat smaller (0.050) and not significantly different from zero at conventional
levels, while the point estimate is similarly large and precisely estimated for agricultural
practices measured by the transplanting index (0.111) despite the smaller sample size in the
second year.

Appendix Tables A4 and A5 report the treatment effects on the adoption of individual
agricultural practices. Consistent with the existing evidence of the impact of digital advice on
farmer behavior (Fabregas et al. 2025), we observe increases of a few percentage points each
across several practices in both years, including seed replacement rate, pesticide adoption,
and zinc application in Year 1, and seed replacement rate, and nursery fertilizer application
in Year 2.

5.2.2 Impact on agricultural outputs

We next examine treatment impacts on cultivation decisions and agricultural outputs. Table
5 Columns (1) and (2) show the ITT effects on decisions about whether to plant rice and
about the land allocated to cultivation of rice; Columns (3) and (4) report the ITT effects
on yield (measured in kg/ha) and harvest (measured in kg). We report impact estimates

13. Cohort 1 treated farmers started receiving agricultural advisory service on June 9, 2021 (the Kharif
2021 season).
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separately for each year (Panels A and B) and together in a pooled regression (Panel C).
Three insights emerge from this analysis.

First, we find no evidence that access to digital advisory affects rice cultivation decisions
for an average farmer, at either the extensive or the intensive margin. In both years, more
than 95% of farmers in the sample report planting rice with an average cultivation area of a
little less than one hectare.

Second, impact estimates on yield and harvest suggest improved agricultural outputs for
treated farmers. The point estimates of effects on both yield and harvest are consistently
positive, and precision improves in the pooled sample. In Figure 3, we plot kernel densities
of yield across all rice plots by experimental arm. The density curves are indistinguishable
between the treatment and control groups at baseline (Sub-figure a). In contrast, the density
curves for the treatment group shift right in both post-intervention years (Sub-figures b and
c), suggesting improved yield over a large portion of the distribution.14

Third, the estimated effects are noticeably larger and more precise for harvest than for
yield. Pooling data from both seasons, treatment increased yield by 1.7% (Column (3) in
Panel C). Despite no significant increase in the area dedicated to rice cultivation, treatment
increased the quantity of rice harvested by 4.1% relative to the control mean of 2,468 kg.
These results are robust to multiple hypothesis correction.

It is plausible that the average effect masks important heterogeneity in the impacts on
cultivation areas and yield. For instance, digital advisory may encourage farmers with re-
source constraints to intensify input use in a smaller cultivation area, while it may encourage
others to expand areas of cultivation. We explore potential mechanisms further in the later
discussion of heterogeneous impact by baseline yield in subsection 5.3.3.

5.2.3 Impact on revenues, costs, and profits

In Table 6, we report estimated effects on revenues, value of harvest, costs, and profits from
rice production. Recall that we only collected these data from farmers who completed in-
person surveys: harvest data, on the other hand, were collected in both in-person and phone
surveys. Therefore, we begin by reporting the treatment effect on harvest in the full sample
of 3,835 farmers: an increase of 76.5 kg, representing a 3.22% change relative to the control
group. We compare this to an estimated effect of 108.0 kg (4.82%) for the subset of 1,929
farmers in the in-person sample. We fail to reject the equality of the treatment effect among

14. Two-sample Kolmogorov-Smirnov tests show that the the difference in yield distributions between the
control group and the treatment group are statistically insignificant in Year 1 and significant in Year 2.
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these two samples. We also fail to reject that farmers assigned to be surveyed in person have
the same yield as those assigned to be surveyed over the phone when using satellite data
(Table 12), suggesting no systematic difference between the two samples.

Columns (3)-(6) of Table 6 report the treatment effects on revenue, cost, and profit out-
comes, for the subset of farmers who completed in-person surveys. The estimates are positive
across all outcomes but imprecisely estimated. The coefficients represent increases of 3.95%
in reported revenues, 4.44% in the value of the harvest, 3.20% in variable costs, and 4.24% in
an imputed measure of profits.15 The confidence interval for the estimated effect on profits is
particularly large with the possible effects ranging from a decline of Rs 1,493 to an increase of
Rs 2,146. The treatment impact estimates for alternative construction of outcome variables
using winsorized cost and different revenue components are reported in Appendix Table A8,
Columns (5)-(6). The point estimates remain relatively consistent, while the precision of
the estimates improves as expected. Still, with the wide confidence intervals, these average
impact estimates do not offer clear evidence of the impact on economic outcomes for farmers.

5.2.4 Impact on likelihood of crop loss

In the second year, we collected data about rice crop losses in order to understand whether
the treatment improves a farmer’s ability to cope with adverse events. Table 7 presents the
treatment impact on the likelihood of any rice crop loss and of severe rice crop loss (defined as
losing more than half of their crops), broken down by reported reasons for loss. Notice that
the incidence of crop loss is high in this population: over 61% of control farmers reported
experiencing some rice crop loss (Column (1)), and 21% of control farmers lose more than
half of their crops (Column (6)). Access to Ama Krushi reduces the likelihood of any crop
loss by 4.9% and of severe crop loss by 9.6% (Columns (1) and (6)). Most of the severe
crop loss is caused by weather-related events, including floods, other weather events, and
pests and diseases. Treatment reduces the probability of any loss due to other weather by
3 percentage points; effects on other channels of loss are estimated imprecisely. Focusing on
the probability of severe loss, treatment sharply reduces the probability of loss due to other
weather events, and to pests and disease, by 24% and 26% relative to the control means.
These results are robust to multiple hypothesis corrections. Unfortunately, we did not collect
details of “other weather events” that farmers reported. Among a small group of farmers
who provided additional information (4% of those that reported “other weather events”),

15. We report the treatment effects on individual rice production cost and investment items in Appendix
Table A6. The treatment triggers some variable cost (e.g., on fertilizer, hired labor, and tractor) and increases
the investment amounts.
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excessive water (i.e., heavy or unseasonable rainfall that did not cause floods) and drought
or scarcity of water are the two commonly reported reasons.

There are several features of Ama Krushi that may help farmers manage weather risks.
First, the advisory service provides prophylactic advice to improve plant resilience. For
instance, stress-tolerant seed varieties, including drought- and flood-resistant varieties, are
recommended in at-risk areas; zinc fertilizer can improve plant performance under water-
stress conditions; and preventive pest management practices reduce the potential damage
from pest attacks. Second, reactive advice to control damage from extreme weather events
is sent in real time: The timing of advice on sowing is based on realized rainfall; farmers
receive advice on the re-application of fertilizer and pest management after heavy rainfall in
the early growing season. Finally, farmers receive alerts and relevant advice when cyclones
are forecasted, including advice to cover crops during the growing season and harvest early
for storage in a dry place during the harvest season.

Notably, reported severe crop losses due to floods in 2022 are concentrated in areas that
were affected by a sudden overflow of the Mahanandi river in August, an early growing
season. This event resulted in the flooding of a large proportion of rice fields in the villages
located along the river bank 16. In these areas, 45% of farmers in the control group reported
losing more than half of their rice crops, 85% of which were reportedly due to floods. In
other areas, only 2.3% of control farmers reported losing more than half of their rice crops
due to floods. The advisory service did not have the information in advance to alert farmers
of the flooding. Even if the information were available a few days in advance, there may
be limited real-time advice that could help farmers mitigate the effect of a severe flooding
event. This may be an example of a weather shock that digital advisory alone cannot help
farmers to protect themselves against.

5.3 Heterogeneous treatment impacts

The analysis of the average treatment impact suggests that Ama Krushi significantly im-
proves agricultural practices, leading to a modest increase in yield and harvest, and a signifi-
cant reduction in the likelihood of crop loss due to weather-related events. While the positive
point estimates suggest a potential increase in the profitability of rice cultivation, the average
effect is estimated imprecisely. In this section, we consider heterogeneous treatment impacts
by weather shocks during the evaluation period and baseline agricultural productivity.

16. More detailed information about this river flooding is described in this Wikipedia page: “2022 Odisha
Floods”.
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5.3.1 Extreme weather events during the study period

The reduced likelihood of severe crop loss due to weather-related events suggests that Ama
Krushi was particularly effective at helping farmers cope with certain types of shocks. To
better understand the extent of this impact, we investigate the treatment impact in the pres-
ence of unanticipated weather shocks. To do this, we first identify major weather events that
affected rice cultivation in the study area, using daily rainfall data at the block level from the
state weather monitoring portal and government reports on damages in rice cultivation from
extreme weather events.17 The identified events are summarized in Appendix Table A7. In
the first year, study areas experienced two events: excess rainfall (heavy, concentrated rain-
fall that caused submergence) during the growing stage18, and a cyclone in early December
at the time of harvest19. These events affected 30% and 46% of farmers, respectively, in the
study areas. In the second year, there were no incidents of excess rainfall or cyclone in the
study areas. Instead, two major events were river flooding (discussed above)20, affecting 17%
of farmers in the sample, and scarcity of rainfall that resulted in a consistent lack of water
in rice fields during the growing season, affecting over 33% of farmers in the sample21.

Excess rainfall in 2021 and scarce rainfall in 2022 are apparent in the rainfall patterns
over the course of the season, aggregated at the district-level in Figure 4. In the figure on
the left, the spike in the volume of rainfall within a 2-week time window in early September
reflects the concentrated heavy rainfall received over two days. In contrast, the figure on the
right illustrates the consistent lack of rainfall observed in some blocks over the course of the
growing season in 2022.

17. The daily rainfall data are extracted from the government’s weather monitoring portal and government’s
reports on damages on rice cultivation from climate events are extracted from Special Relief Commissioner.

18. We define excess rainfall as receiving more than 250 mm rainfall over two days in the period of August
16 to October 15 in 2021. Shifting the threshold for excess rainfall slightly (50 mm) upward or downward
does not affect the overall results.

19. We define a cyclone as receiving more than 50 mm rainfall over two days in the period of December 4
to December 10 in 2021, around the peak harvest time. This definition aims to catch the impact of Cyclonic
Storm Jawad.

20. We define river flooding, using the government’s incidence report which presents the extent of damage
in rice fields at the village level. We aggregate this data to the panchayat level to match our randomization
stratification clusters.

21. We define scarce rainfall as receiving less than 450 mm rainfall over the period of August 16 to October
15 in 2022. Shifting the threshold for scarce rainfall slightly (50 mm) upward or downward does not affect
the overall results.
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5.3.2 Heterogeneous treatment impact by weather shocks

Tables 8 and 9 report the heterogeneous treatment impact by each weather shock. In Year
1, treatment has positive effects on yield, harvest, and profits for farmers living in areas
affected by excess rainfall, as reported in Table 8, Panel A. Farmers in these rain-affected
areas who were offered Ama Krushi had 165.5 kg/ha (6.8%) higher yields, 198.5 kg (9.4%)
higher harvest, and Rs 2,240 (US$30) more in profits than control farmers in the same
areas. Only the effect on harvest remains statistically significant after multiple hypothesis
corrections accounting for the 36 coefficients reported in Table 8 and 9. When constructing
the profit measure using winsorized cost components, the point estimate is similar but the
Romano-Wolf p-value reduces to 0.202, as reported in Appendix Table A9 Column (1). The
effect of the treatment for farmers in cyclone-affected area is similar, though the benefits are
smaller and not statistically different from zero.

In the second year, the characteristics of the weather shocks and the corresponding treat-
ment effects appear to differ from those observed in the first year. Table 9 shows that farmers
in areas that were not affected by river flooding generally saw the positive effects of the Ama
Krushi service, with increases in yield and harvest and a decrease in the probability of severe
crop loss; these effects lose precision after correcting for multiple hypothesis testing. How-
ever, the effect of treatment in the areas that were affected by river flooding were close to
zero. This may be because there are few available options to mitigate against the harm of
flooding: none of the advice that Ama Krushi offered to farmers could prevent losses from
this type of shock. Treatment had about equal (small, positive, and imprecise) effects on
yield and harvest for farmers in areas that did and did not suffer from rain scarcity. Treat-
ment did significantly reduce the probability of severe rice crop loss in scarce rainfall areas,
by 5.8 percentage points or 21% of the mean of control farmers in those areas.

As we noted, this study was not designed ex-ante to measure heterogeneous impact by
specific types of weather shocks. The consistent results between the average ITT impact
and heterogeneous treatment impacts by weather shocks provide suggestive evidence that
the impact of Ama Krushi is largely concentrated in areas that experienced certain weather
shocks.

There are four mechanisms through which Ama Krushi could have had stronger effects
on the agricultural outcomes of farmers affected by weather shocks. First, precautionary
advice could have made treated farmers more resilient, such as by using more stress-tolerant
seeds or improved planting and drainage practices. Second, real-time and ex post advice
tailored to realized shocks could have helped treated farmers mitigate damage and recover
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more effectively than those in the control group. Third, there could have been a higher
return to (or take-up of) general agricultural advice in places that experienced shocks than
in places that did not. We can only provide indirect tests of these mechanisms, because we
did not collect data about specific practices associated with loss prevention and recovery
(i.e., we did not ask about the specific seed type used by farmers in the sample).

The precautionary channel cannot explain the effects for farmers affected by excess rain-
fall in the first year, as Ama Krushi did not issue precautionary advice about rainfall or
flooding before the heavy rainfall and cyclone occurred. Farmers in shock-affected areas
were more likely to pick up calls about storm mitigation than farmers in unaffected areas,
which would be consistent with the second channel, but conditional on picking up the call,
farmers in shock-affected areas did not listen to the message at higher rates.

In the second year, the service did offer two types of precautionary advice that turned
out to be relevant: advice about planting flood tolerant and drought tolerant seeds. While
we do not observe specific planting practices that would allow us to confirm that farmers
adopted this advice and that the improved seeds were protective, the precautionary channel
cannot be ruled out in the second year. Listening patterns after the second year shocks were
similar to those in the first year: shock-affected farmers were more likely to pick up calls
that included mitigation advice but not more likely to listen to the content than farmers not
exposed to the weather shocks, conditional on picking up the call. The return to this advice
could have been higher in shock affected areas, contributing to the higher overall effect of
the service for farmers exposed to scarce rainfall.

5.3.3 Heterogeneous treatment impact by baseline yield

One important consideration when assessing the impact of a digital intervention targeting
low-income households is how the benefits are distributed across the population. In particu-
lar, improved agricultural advice may have different impact for farmers operating at different
yield levels. Following the PAP, we report in Table 10 the heterogeneous treatment impact
by whether the self-reported yield at baseline is above or below the panchayat median.22

Differences in the control group means (shown at the bottom of the table) illustrate that
farmers with below-median yield at baseline utilize fewer recommended inputs and prac-
tices, have smaller cultivation areas, produce and earn less, and are more exposed to the risk
of severe crop loss. For this group, access to digital advisory significantly increases areas

22. Yield at baseline refers to the self-reported yield of the primary rice plot for the Kharif 2020 season.
We stratified the intervention randomization by this same variable.
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of cultivation and harvest (Columns (2), (4), (7), and (9)) in both years, with small and
imprecisely estimated positive coefficients for adoption of core agricultural practices, yield,
and profits as well. The increase in the area cultivated appears to be the most important
mechanism for increased harvest for the low-yield baseline group: the magnitude of the effect
on the area cultivated could explain 60% of the increase total harvest, even at the low-yield
control group’s baseline yield.23

On the other hand, treatment impact among farmers with baseline yield above median
are mixed. The treatment improves the adoption of core agricultural practices by 0.09 SD
and results in a positive and insignificant increase in yield in Year 1, but this does not
lead to improvements in harvest or profit. In Year 2, we observe positive but insignificant
increases in yield and harvest, leading to a lower probability of severe rice crop loss, but
without improvements in measured agricultural practices.24 When pooling the data between
the two years, the treatment effect on yield becomes marginally significant, suggesting that
the impact pathway for this group is probably through increased yield (results are not shown
but available upon request). Overall, these findings suggest that different groups of farmers
may respond differently to the expanded availability of localized agricultural advice.

6 Empirical Results from Remote Sensing Data

Measuring agricultural yield remains a key empirical challenge of evaluating the impact of
agricultural programs. Self-reported data are well-known for measurement errors (Abay
et al. 2019; Abay 2020; Deininger et al. 2012; Gourlay, Kilic, and Lobell 2019). Yields
collected through crop cut exercises are considered to be the gold-standard but are costly.
Agricultural outcomes exhibit a large, unpredictable variation across seasons (Rosenzweig
and Udry 2019). Multiple seasons of data collection are recommended to allow more precise
and robust impact analysis.

A promising solution to these challenges is the use of remote sensing data, which provides
objective yield measures that are free from reporting bias, faces limited to zero attrition, and
potentially offers outcome measurements for a large sample and over a long time horizon.

In this section, we explore the application of remote sensing data in assessing the impact
of the digital advisory service, and discuss its advantages and shortcomings. We first describe

23. In the first year, the mean yield in the control group (2,569 kg), multiplied by the treatment impact
on cultivation area (0.036 ha) is roughly 59% of the treatment impact on harvest (157 kg).

24. The total effect of treatment on this group is computed as the sum of the coefficients on treated and
the interaction term, and is reported in the bottom row of the table.
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the approach to yield prediction and then present two applications of the VI-predicted yield
measure: investigating survey attrition and selection, and estimating the program impact.

6.1 Predicting rice yield using satellite imagery

We provide a brief description of the data and our approach to predicting rice yield in this
section.

Our vegetation indices come from Sentinel-2 satellite imagery collected between June and
December over three years (2020-2022) for the primary plot locations identified at baseline.
Satellite imageries are recorded every five days in each orbit. We first create a set of vegeta-
tion indices (VIs) — NDVI, reNDVI, GCVI, Laigreen, EVI, and MTCI — at the pixel-day
level and aggregate the VIs to the plot-day level using an area-weighted average. We then
construct a set of VI features to be used in the yield-prediction model, including monthly and
seasonal mean, median, minimum, and maximum values of each VI. In addition, we gather
other covariates that are probably correlated with rice yields, including geospatial and cli-
mate variables. Lastly, we create an additional set of prediction features by interacting VI
features with block dummies to allow the slope of VIs to vary by location.

Our ground truth comes from the CCEs we conducted in 2021 and 2022. In the first
year, we collected crop-cut data from 733 farmers who lived in the study blocks but did not
belong to the study sample; in the second year, we collected crop-cut data from 150 Cohort
1 farmers, 188 Cohort 2 farmers, and 176 farmers of the first-year CCE sample.

We use several prediction models — OLS, Lasso, random forest, gradient boosting, neural
network, and stacking — on various iterations of our prediction feature dataset. These
iterations include variations in the threshold for cloud coverage, construction of VI features,
and pixel selection along plot boundaries. This approach allows the optimal model to be
identified empirically: we conduct a large number of prediction models and select the best-
performing model using predetermined performance criteria evaluated at the testing sample
with cross-validation. We use two performance metrics. First, the root mean square error
(RMSE) is a common metric that measures the average difference between predicted and
actual values, thus indicating how well the model can predict the target value (Klompenburg,
Kassahun, and Catal 2020). Second, in an impact evaluation, we care about how well
the change in predicted yield correlates with the observed change in yield. We thus use
the R2 from a regression that models the linear relationship between the change in the
predicted yield values and the change in crop-cut yields between 2021 and 2022, as the
second performance metric. We rank the prediction models by the two performance metrics
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and select the one with the best overall performance as our optimal prediction model.
Our selected, optimal prediction model uses a random forest method, resulting in an

RMSE of 1,194 kg/ha and an R2 of 0.6122 in the testing data. We highlight three caveats in
interpreting the impact estimates using the predicted yield measure we constructed. First,
the mean yield in the training sample is 3,227 kg/ha. The observed RMSE in our model is not
trivial, posing some concerns about the reliability of the predicted yield measure. Second,
the distribution of predicted yield values has a compressed distribution compared to that of
CCE yields, as shown in the Appendix Figure A2. This problem has been widely documented
and discussed in the literature (Jain et al. 2016; Lobell et al. 2019). In the context of an
impact evaluation, the compressed yield prediction probably leads to significantly smaller
impact estimates than the true impacts of the intervention in absolute terms. Third, our
training data contained a limited number of observations from the plots that reported crop
loss, potentially limiting our ability to accurately estimate yield for low-performing plots. In
the crop cut sample, 69% of the farmers in the first year and 24% in the second year reported
experiencing field issues whereas 61% of Cohort 1 farmers reported experiencing rice crop
loss in the second year. While these challenges hinder our ability to rely on VI-predicted
yield to accurately estimate program impact, our analysis that focuses on the consistency of
patterns in impact estimates, with the above caveats in mind, still offers valuable insights.

6.2 Investigating survey attrition and selection using predicted yield

One major advantage of using satellites to measure yield is that it eliminates attrition in
post-intervention measurements. Using predicted yield measures available for all farmers in
the evaluation sample, we first revisit issues around survey attrition. In Table A2, we test
whether the post-intervention, VI-predicted yield predicts survey attrition and whether this
correlation differs by the treatment status within the sample of farmers assigned to receive
an in-person survey (Column (1)) and for the full sample (Columns (2)-(4)).25 The outcome
in Columns (1)-(2) is an indicator for responding to questions on agricultural profits in
the midline survey (Panel A) and responding to questions on agricultural practices in the
endline survey (Panel B). Across the board, we see neither correlations between VI-predicted
yield and the likelihood of responding to key survey questions, nor differential correlations
by the treatment status. The survey response rates estimated at the mean value of post-
intervention, VI-predicted yields are statistically indistinguishable between the control and
treatment groups across all comparisons except one. The mean predicted yield among those

25. We calculated bootstrap standard errors for all analyses using VI-predicted yield.
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who responded to questions on agricultural practices is 3% higher in the treatment group
than in the control group. These results, along with the absence of differential attrition by
observable characteristics between the treatment and control groups reported in Appendix
Table A1, offer robust evidence that treatment effects estimated using survey data are not
influenced by differential attrition.

We next use VI-predicted yields to examine whether the (non-differential) selection into
the survey sample influences the treatment impacts estimated with the survey data. We
estimate the average treatment impact on VI-predicted yield across different analysis samples
and full samples in Table 12. The average effects are generally comparable across different
sample frames in both years. Point estimates appear to be slightly larger for some of the
analysis samples in the first year (Columns (2)-(3) vs Column (4) in Panel A), but the
confidence intervals largely overlap. The small difference may be partially driven by likely
survey attrition among farmers who did not cultivate rice. These results suggest that the
treatment impacts analyzed using the survey sample are not systematically different from
treatment impacts estimated from the full study sample, in one of the key outcomes. It
reduces the concerns on the generalizability of treatment impacts estimated from the survey
data, given we only follow up with Cohort 1 farmers and experience about 20% attrition in
each survey round.

6.3 Estimating treatment impacts using predicted yield

We examine the treatment impact on farmers’ cultivation of the primary rice plot, for a subset
of farmers who respond to primary rice plot questions, shown in Table 11. The results of
interest are the treatment impacts on self-reported yield using cultivation area reported in
follow-up surveys (Column (4)), self-reported yield using GPS-measured plot size at baseline
(Column (5)), and the VI-predicted yield for the GPS-measured plot (Column (6)). In
the first year, the direction of treatment effects on the self-reported and VI-predicted yield
are all consistent and positive. The point estimate from the VI-predicted yield is smaller
but more precise, potentially because of the issue of compressed distribution of predicted
yield discussed above. In the second year, despite there being no treatment impacts on
the cultivation areas, the treatment impact estimated from survey data are inconsistent
between two yield outcomes that use different measurements of plot area. The treatment
impact on the VI-predicted yield is consistent with the effects obtained for the reported yield
with the GPS-measured area. One plausible explanation for these patterns is that farmers’
rice cultivation areas change across seasons. The GPS-measured plot sizes at baseline were
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collected from March to May 2021 for Cohort 1 farmers, immediately before the start of
the agricultural season, likely representing a more accurate measurement of the cultivation
area for the agricultural season in the first year than for the season in the second year. This
offers an important insight on the study design when using satellites for yield measurement,
in that repeated measurements of cultivation areas may be necessary to use VI-predicted
yield to measure program impact over multiple seasons in a setting where farmers cultivate
different portions of the plot across seasons. The consistency between effects estimated from
the VI-predicted yield and from the reported yield using the GPS-measured area suggest
that using remote sensing data to measure treatment impacts has potential.

Taking the advantage of VI-predicted yield is available for the full study sample, we
examine the treatment impacts in these large samples. As shown in Table 12, the treatment
impact on the VI-predicted yield of the full samples is similar to the impact of the smaller
survey sample. On average, the treatment has modest but positive effects on agricultural
yield in the first year, and no meaningful effects in the second year.

7 Benefit-Cost Ratios

Digital information services can be delivered at scale at a very low marginal cost per user
served. These services can, therefore, generate large benefit-cost ratios (BCRs) at scale even
when they have relatively modest average effects on agricultural profits among all farmers
reached by the service. To shed light on how marginal BCRs change over time, we calculate
BCRs under different time frames at varying levels of scale and prevalence of weather shocks.
We use the estimated farmer-level impacts in 2021 from this study, the observed scale and
cost of the Ama Krushi service between 2021 and 2024, and weather data over the last 10
years to conduct this exercise.

Recall that we estimated the treatment impact on profits in 2021 using two specifications:
the average impact for the full sample and the heterogeneous impact by the presence of excess
rainfall. Our earlier analysis suggests that the impact of Ama Krushi is concentrated in areas
hit by excess rainfall. In this exercise, we start by presenting the BCR calculations for 2021
using average impacts, and again, focusing on the larger impacts concentrated among the
smaller number of farmers affected by excess rainfall, and then we expand the calculations by
varying the parameters on scale (farmer reach), cost, and the prevalence of weather shocks
using the impact on profits for areas hit by excess rainfall, which are more precisely estimated
than the average impact for the full sample.
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Panels A and B of Table 13 present the BCRs in 2021 using the average impact on
profits and the impact for farmers in areas hit by excess rainfall, using treatment effects
as estimated from the experiment and the actual coverage and cost data that correspond
to the experimental period. Farmer reach (Column (1)) captures the number of farmers
served by the service in a given time period by taking the weighted average of the total
number of Ama Krushi users recorded on a quarterly basis. For instance, the number of
farmers served in 2021 is calculated by taking the weighted average of farmer reach figures
reported in March, June, September, and December in 2021. Ama Krushi served 1.37 million
farmers in 2021, 21% of whom resided in areas affected by excess rainfall based on the block-
level daily rainfall data for the entire state. The total cost of the service delivery reflects
the total budget of the program. In 2021, Ama Krushi was financed by a combination of
philanthropic funding and the state government budget at nearly US$1 million or US$0.76
per farmer per year. The resulting BCRs are reported in Column (5). The central estimates
across different specifications and profit measurements are all well above 1:1, but the 95%
confidence intervals (CIs) vary widely, from large negative to large positive figures. As
expected, CIs for the BCRs calculated using more precise profit impact estimates for areas
hit by excess rainfall are substantially tighter, with the most precise estimate suggesting a
BCR of 10:1 with a 95% CI of 3:1 to 17:1. Notably, the central BCR estimates using the
least noisy profit measure, which is based on winsorized cost components, are similar in
magnitude between Panels A and B.

In the next three panels, we show how the BCR estimates change from year to year and
over time, depending on the scale and the prevalence of weather shocks. Excess rainfall
shocks were much more prevalent in 2021 than in the ten-year period 2014-2023. Therefore,
we consider whether the service would have had a favorable BCR in a year with more typical
rainfall. For this exercise, in Panel C, we recalculate the BCR using the estimated benefit for
excess rainfall-affected farmers from the 2021 experiment and the corresponding cost figures,
but with the assumption that the share of farmers affected by the shock matched the 10-year
average of the prevalence of excess rainfall in the state — 6%, rather than the 21% actually
observed in 2021. Corresponding BCRs attenuate significantly.

In Panel D, we present the average BCRs for the three-year period from 2021 to 2023
using the average farmer reach recorded on a quarterly basis, the actual prevalence of excess
rainfall over those three years, and the program cost over those three years. We continue
to take the estimated effect on shock-affected farmers from the 2021 experiment. The scale
of the service more than doubled, while the average program cost remained roughly the
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same. Even at the lower prevalence of weather shocks of < 10%, the estimated BCRs are
comparable to those in Panels A and B, driven by the increased coverage and falling annual
costs.

Finally, Panel E attempts to capture the BCR of the program operated at scale. We use
the treatment impact as estimated from the 2021 experiment and the average prevalence
of shocks over the ten-year period 2014-2023. For this exercise, we assume that the farmer
reach recorded at the end of 2023 and the program cost in 2023 reflect the long-term scale
and cost of Ama Krushi based on its user growth-trajectory and spending pattern. While
the farmer reach grew sharply from year to year through 2023, it has remained stable from
2023 to 2024, suggesting that the scale is approaching its steady state. The total cost also
remained constant from 2023 to 2024. With the service reaching near 7 million farmers at
an annual budget of US$ 1 million, the BCR reaches 13:1 in the long term.

The five scenarios presented in Table 13 illustrate some of the drivers of the BCR for
this service. Because the largest benefits accrue to farmers affected by excess rainfall shocks,
the extent of shocks largely determines the benefits of the service. The first year of the
experiment, 2021, was an outlier in that 21% of farmers were affected by excess rainfall
compared to 6% in an average year. This means that looking only at the BCR for 2021
could overstate the value of the service. However, Ama Krushi had not yet reached its
steady state scale as of 2021. Coverage increased and costs fell rapidly over the next two
years, so the 2021 BCR reflected higher costs than what will characterize the service’s long-
run operations. Taking into account the average incidence of excess rainfall and the expected
coverage and costs of the program in the long run suggests an expected BCR of about 13.
Using the preferred (winsorized) measure of farmers’ costs to compute profits, the 95% CI
for the BCR excludes values lower than 3.3. Therefore, we expect that this program provides
a good value-proposition in the long run even though it primarily benefits farmers affected
by relatively scarce excess rainfall shocks.

One limitation of this exercise is that our estimates of the impact on profits come from
our evaluation data from five out of thirty districts in the one agricultural season for which we
have experimental treatment effects and data on production costs. While we implemented the
experiment with a second cohort in the following year, we did not collect data on production
costs in the second year. The nature of the shocks that affected farmers in the sample were
different in the second year, so while we find that Ama Krushi increased yields and harvests
for farmers in areas affected by inadequate rainfall in 2022, we lack the data to calculate
effects on profits and therefore to incorporate the benefits to drought-affected farmers (or
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those affected by other shocks that were not realized in 2021, the only year in which we
collected all of the data necessary to measure profits) into our long-run BCR calculations.

8 Conclusion

This study evaluates the impact of a digital advisory service reaching millions of smallholder
farmers in Odisha, India. Existing evidence demonstrates the effectiveness of digital exten-
sion services in promoting the adoption of recommended practices in the smallholder farmer
context. However, few studies measure the impact of a service that leverages localized,
real-time information to customize advice on a wide range of agricultural topics at scale.

Our findings offer initial evidence that such a service can increase farmers’ capability
to mitigate adverse effects of some production risks. Our analysis shows that the digital
advisory service reduced the likelihood of severe crop loss and that the positive impact of
the service is concentrated in areas hit by weather shocks, including excess rainfall in one
year and scarce rainfall in another year. In contrast, we do not find a significant impact for
farmers in areas that were unaffected by shocks during the evaluation period, despite the
similar level of service usage. These results suggest that the impact of and who benefits from
the service can vary from season to season, depending on the presence of weather shocks.

There are several plausible mechanisms through which the advisory helped farmers in-
crease their resilience against weather shocks. The Ama Krushi advisory included precau-
tionary advice on practices that enhance plant resilience to adverse events, including stress-
tolerant seeds and micronutrient fertilizers; real-time prevention alerts for actions farmers
could take to protect crops from severe damage immediately before adverse weather real-
ization; and mitigation advice with damage-control measures immediately following adverse
weather events, to minimize loss. While we find that the service overall improves farming
knowledge and practices, our data on agricultural practices lack sufficient details to distin-
guish different mechanisms of impact. One productive area of future research is to better
understand the heterogeneity of impact mechanisms by exploring the specific constraints
farmers face. This could further improve the targeting of advisory content.

We also explore the use of remote sensing data as an alternative, more objective —
and potentially more scalable — measure of the impact of the service. Our treatment
impacts on the VI-predicted yield are positive in the first year, corroborating the survey
results, and negative and insignificant in the second year, a deviation from the survey results.
Our analysis suggests that the inconsistent, second-year results may be driven by farmers
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changing cultivation areas across seasons, consequently resulting in an inaccurate prediction
of yield when relying on baseline plot boundary data. While these methodological challenges
pose barriers to using satellites to measure program impact in a randomized evaluation, we
demonstrate that they can offer valuable insights on differential attrition and survey sample
selection to assess the validity of survey results.

There are untapped opportunities to improve smallholder farmers’ resilience to shocks
by making more targeted information available. Our calculations suggest that the long-run
benefits generated by Ama Krushi would be an order of magnitude larger than the cost of
the at-scale service operation in 2023 with near seven million farmers in the state. Further
work to uncover heterogeneous mechanisms of impact across different types of information
could inform future program designs, as advanced technologies expand the scope of localized
information that can be made available in real time.
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9 Figures

Figure 1: The timeline of the study
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Figure 2: The distribution of Cohort 1 farmers’ engagement with the digital extension service

Note: Data are from Cohort 1 farmers. The figures present the distributions of time spent on the digital agricultural extension service. Total
minutes include the time spent on listening to all push calls and the time spent on the hotline. Minutes spent on core content include the time
spent on listening to farming advice (as opposed to notices and information on government schemes) and the hotline.
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Figure 3: The distribution of self-reported total rice yield (kg/hectare)
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Figure 4: Rainfall patterns during the Kharif season in 2021 and 2022

Note: The figures show the mean block-level rainfall during the course of the Kharif season by district. The horizontal red line indicates the
level of rainfall needed for rice cultivation. In 2021, the spike in the time window at September 1-15 indicates the extremely heavy rainfall that
submerged a large proportion of rice fields in some study blocks. In 2022, the mean rainfall between August 15 and October 15 dips below the
indicative minimum required rainfall in three out of five districts. Source data: Odisha Daily Rainfall Monitoring System.
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Table 1: Baseline statistics and the randomization balance

Cohort 1 Cohort 2

(1) (2) (3) (4) (5) (6)
Control Treatment Total Control Treatment Total
mean coefficient obs. mean coefficient obs.
(SD) (SE) (SD) (SE)

Panel A: Baseline outcomes
Primary rice plot yield 3,478 -95.56∗ 3,563 3,713 -47.04 7,386

(2,207) (55.99) (2,146) (37.08)
Primary rice plot harvest 434.4 -2.407 5,087 457.8 2.940 7,855

(387.7) (9.165) (405.7) (6.325)
Total rice cultivation area 0.786 -0.005 5,190 0.842 -0.012 8,428

(0.537) (0.015) (0.616) (0.012)
Total rice yield 2,952 -19.28 4,751 3,246 -25.47 8,329

(1,830) (41.88) (1,972) (36.65)
Total rice harvest 2,149 -32.76 4,762 2,387 -18.25 8,362

(1,832) (49.62) (2,005) (39.90)
Value of harvest 29,424 -351.1 4,762 32,934 -189.3 8,362

(25,864) (666.4) (28,543) (555.8)
Variable cost 19,765 144.8 5,200 24,819 16.86 8,438

(15,110) (407.3) (18,425) (352.9)
Imputed profit 10,165 -505.0 4,759 8,366 -150.7 8,346

(21,533) (600.6) (22,893) (439.4)
Panel B: Baseline controls
Max. NDVI in Kharif 19 0.769 -0.000 5,204 0.761 -0.000 8,471

(0.067) (0.002) (0.068) (0.001)
Max. NDVI in Kharif 20 0.781 -0.001 5,204 0.778 0.000 8,471

(0.078) (0.001) (0.076) (0.001)
Female 0.170 0.012 5,204 0.131 -0.006 8,471

(0.376) (0.010) (0.337) (0.007)
Age 43.94 0.279 5,204 44.13 0.169 8,471

(9.800) (0.267) (10.07) (0.209)
Literacy index -0.000 0.005 5,204 -0.000 0.003 8,471

(1) (0.027) (1) (0.022)
Primary phone: solely own 0.390 -0.006 5,194 0.405 0.008 8,427

(0.488) (0.013) (0.491) (0.010)
Primary phone: feature 0.674 -0.003 5,193 0.590 -0.006 8,427

(0.469) (0.012) (0.492) (0.011)
HH wealth index -0.000 0.001 5,204 0.000 -0.017 8,471

(1) (0.026) (1) (0.020)
Access to irrigation 0.485 -0.006 5,201 0.466 -0.009 8,470

(0.500) (0.010) (0.499) (0.009)
Compensated before service 0.496 -0.025∗ 5,204

(0.500) (0.013)
p-value of joint F-test 0.438 0.955

Note: Data are from the baseline survey of Cohort 1 and Cohort 2 farmers. Baseline outcomes,
except the imputed profit measure, are winsorized at the 95th percentile; imputed profit is win-
sorized at the 2.5th and the 97.5th percentiles. All Cohort 2 farmers were compensated before
the service started. Fixed effects at the randomization strata level are included. Robust stan-
dard errors in parentheses: * p<0.10, ** p<0.05, *** p<0.01. The last row show the p-value of
a joint test of all individual tests in the preceding rows.
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Table 2: Farmers’ engagement with the digital extension service in Year 1 (Kharif 2021)

All treated farmers Consent to midline Difference

(1) (2) (3) (4) (5)
Mean SD Mean SD T-test

Panel A: Outbound push calls
# of agricultural advisory calls sent 49.48 10.00 49.35 9.768 -0.130
# of push calls sent 52.46 10.11 52.33 9.875 -0.128
Avg. length (min) of push calls sent 1.817 0.136 1.816 0.141 -0.001
Total length (min) of push calls sent 95.89 18.83 95.67 18.40 -0.226
Registered for the service initially 0.995 0.073 0.994 0.076 -0.000
Listened >=1 ag. advisory call more than 10s 0.940 0.237 0.954 0.209 0.014∗∗

Share of push calls picked up 0.546 0.280 0.574 0.271 0.028∗∗∗

Avg. (cond.) listening rate of push calls 0.520 0.256 0.532 0.254 0.012
Share of push calls listend 80% content 0.243 0.224 0.263 0.227 0.019∗∗∗

Total minutes spent on push calls 26.90 21.22 28.98 21.60 2.084∗∗∗

Panel B: Inbound services
Called inbound service 0.171 0.377 0.182 0.386 0.010
Accessed inbound features 0.042 0.201 0.047 0.211 0.004
Submitted questions to inbound 0.041 0.199 0.047 0.211 0.006
Received answers from inbound 0.038 0.191 0.043 0.203 0.005
Total minutes spent on inbound calls 0.830 5.162 0.912 5.579 0.081
Panel C: Total engagement
Total minutes spent on the digital service 27.73 22.22 29.89 22.68 2.165∗∗∗

Number of observations 2,602 2,078 4,680

Note: These statistics are generated from PxD’s administrative data on service usage during the Kharif
2021 season among Cohort 1 farmers. The sample includes all Cohort 1 treated farmers in Columns (1)
and (2) and all Cohort 1 treated farmers who consented to the midline survey in Columns (3) and (4).
Column (5) reports the mean different between (1) and (3). Fourteen farmers opted out of the service at
the time of the registration. Engagement metrics for these farmers take the value of zero.
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Table 3: Farmers’ engagement with the digital extension service in Year 2 (Kharif 2022)

Cohort 1 farmers Cohort 2 farmers Differences

All treated farmers Consent to endline All treated farmers (3) - (1) (5) - (1)

(1) (2) (3) (4) (5) (6) (7) (8)
Mean SD Mean SD Mean SD T-test T-test

Panel A: Outbound push calls
# of agricultural advisory calls sent 46.21 6.349 45.96 6.374 45.17 6.585 -0.249 -1.037∗∗∗

# of push calls sent 50.79 6.860 50.49 6.893 50.11 7.020 -0.297 -0.680∗∗∗

Avg. length (min) of push calls sent 1.365 0.151 1.364 0.153 1.380 0.097 -0.000 0.015∗∗∗

Total length (min) of push calls sent 70.17 9.645 69.76 9.689 69.47 9.96 -0.409 -0.699∗∗∗

Registered for the service initially 0.988 0.109 0.988 0.110 0.995 0.069 -0.000 0.007∗∗∗

Listened >=1 ag. advisory call more than 10s 0.835 0.371 0.849 0.358 0.928 0.258 0.014 0.093∗∗∗

Share of calls picked up 0.398 0.287 0.417 0.287 0.494 0.264 0.019∗∗ 0.096∗∗∗

Avg. (cond.) listening rate of calls 0.559 0.284 0.567 0.282 0.628 0.253 0.008 0.069∗∗∗

Share of calls listened 80% content 0.207 0.229 0.222 0.235 0.282 0.235 0.015∗∗ 0.075∗∗∗

Total minutes spent on push calls 15.81 15.07 16.79 15.35 21.38 15.26 0.982∗∗ 5.573∗∗∗

Panel B: Inbound services
Called inbound service 0.140 0.347 0.144 0.351 0.238 0.426 0.004 0.098∗∗∗

Accessed inbound features 0.023 0.150 0.025 0.155 0.065 0.246 0.002 0.042∗∗∗

Submitted questions to inbound 0.010 0.101 0.009 0.097 0.026 0.159 -0.001 0.016∗∗∗

Received answers from inbound 0.007 0.081 0.006 0.075 0.026 0.158 -0.001 0.019∗∗∗

Total minutes spent on inbound calls 0.533 6.738 0.424 2.418 0.920 3.610 -0.109 0.387∗∗∗

Panel C: Total engagement
Total minutes spent on the digital service 16.34 16.80 17.22 15.84 22.30 16.11 0.874∗ 5.960∗∗∗

Number of observations 2,602 2,116 4,235 4,718 6,837

Note: This table reports the descriptive statistics from PxD’s administrative data on service usage during the Kharif 2022 season among
Cohort 1 and Cohort 2 farmers. The sample includes all Cohort 1 treated farmers in Columns (1)-(2), all Cohort 1 treated farmers who
consented to the endline survey in Columns (3)-(4), and all Cohort 2 treated farmers in Columns (5)-(6). Column (7) reports the mean
difference between (1) and (3); Columns (8) reports the mean difference between (1) and (5). Thirty one farmers from Cohort 1 and 20
farmers from Cohort 2 farmers opted out of the service before the start of the second season. Engagement metrics for these farmers take
the value of zero.
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Table 4: The impact of treatment on knowledge and adoption indices

Midline knowledge Midline adoption Endline adoption
(1) (2) (3) (4) (5) (6)

Core
index

Transplanting
index

Core
index

Transplanting
index

Core
index

Transplanting
index

Treated 0.114*** 0.113** 0.068** 0.098*** 0.050 0.111***
(0.043) (0.046) (0.028) (0.030) (0.039) (0.042)

N 2068 1782 4080 3479 2911 2457
R2 0.017 0.024 0.015 0.014 0.019 0.019

Note: Data are from the midline and endline survey of Cohort 1 farmers. Knowledge
questions in the midline survey and adoption questions in the endline survey were only
collected in the in-person survey. The “core” summary index includes practices that are
relevant to all farmers, and the analysis sample for this variable is the full set of farm-
ers who consented to the respective survey. The “transplanting” summary index includes
practices that are relevant to farmers that practice transplanting and the analysis sam-
ple for this variable includes farmers who consented to the respective survey and reported
transplanting in the Kharif 2020-2021 season in the baseline survey. All regressions con-
trol for vegetation indices from the two pre-intervention Kharif seasons (2019 and 2020)
and demographic characteristics collected in the baseline — the respondent’s gender, age,
literacy level, sole ownership of the primary phone, and household wealth level, access
to irrigation in the upcoming Kharif 2021 season, and whether the respondent’s primary
phone is a feature phone — and imputation dummies for missing baseline measures. Ad-
ditionally, we control for whether the respondent completed the baseline compensation
survey before the start of the intervention, the survey modality assignment for follow-
up surveys (phone or in-person), whether the survey was completed after switching the
modality, and whether the endline survey was conducted in the second batch (for end-
line outcomes only). Fixed effects at the randomization strata level are included. Robust
standard errors in parentheses: * p<0.10, ** p<0.05, *** p<0.01.
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Table 5: The impact of treatment on total rice farming

(1) (2) (3) (4)
Planted paddy Cultivation area (ha) Yield (kg/ha) Harvest (kg)

Panel A: Year 1 - Kharif 21
Treated 0.003 0.011 41.821 76.487*

(0.308) (0.390) (0.331) (0.094)
[0.573] [0.581] [0.573] [0.176]

N 4134 3835 3835 3835
R2 0.005 0.434 0.053 0.395
Control mean 0.986 0.886 2713.196 2374.902
% Change 0.35 1.24 1.54 3.22
Panel B: Year 2 - Kharif 22
Treated 0.000 0.018 64.653 126.225**

(0.957) (0.162) (0.123) (0.028)
[0.942] [0.317] [0.238] [0.020]

N 4170 3733 3733 3733
R2 0.010 0.386 0.053 0.354
Control mean 0.955 0.776 3394.544 2564.961
% Change 0.04 2.29 1.90 4.92
Panel C: Pooled Year 1 and Year 2
Treated 0.002 0.015 52.938* 101.730**

(0.582) (0.168) (0.097) (0.010)
[0.631] [0.317] [0.182] [0.012]

N 8304 7568 7568 7568
R2 0.006 0.408 0.049 0.369
Control mean 0.970 0.832 3047.236 2468.081
% Change 0.21 1.79 1.74 4.12

Note: Data are from the midline and endline survey of Cohort 1 farmers. The dependent variables
are (1) whether farmers planted rice, (2) the total rice cultivation area, (3) total rice yield (kg/ha)
calculated using self-reported harvest and self-reported land size, and (4) self-reported total rice
harvest (kg). Area, yield and harvest outcomes are winsorized at the 95th percentile. All regres-
sions control for vegetation indices from the two pre-intervention Kharif seasons (2019 and 2020)
and demographic characteristics collected in the baseline — the respondent’s gender, age, literacy
level, sole ownership of the primary phone, and household wealth level, access to irrigation in the
upcoming Kharif 2021 season, and whether the respondent’s primary phone is a feature phone —
and imputation dummies for missing baseline measures. Additionally, we control for whether the
respondent completed the baseline compensation survey before the start of the intervention, the
survey modality assignment for follow-up surveys (phone or in-person), whether the survey was
completed after switching the modality, and whether the endline survey was conducted in the sec-
ond batch (for endline outcomes only). For the total rice harvest amount outcome (Column 4),
two additional variables – total rice farming area reported at the baseline and whether its value
is imputed with block median – are controlled. Fixed effects at the randomization strata level
are included. Robust standard errors are calculated in Panel A and B and standard errors are
clustered at the farmer level in Panel C: * p<0.10, ** p<0.05, *** p<0.01. Their corresponding
p-values are reported in parentheses, and Romano and Wolf’s step-down adjusted p-values are re-
ported in brackets. % changes represent the treatment impacts over the control means.
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Table 6: The impact of treatment on rice revenue and profit (Year 1)

Full sample In-person sample

(1) (2) (3) (4) (5) (6)

Harvest
(kg)

Harvest
(kg)

Reported
revenue

(Rs)

Value of
harvest

(Rs)

Variable
cost
(Rs)

Imputed
profit
(Rs)

Treated 76.487* 107.991 656.696 1455.572 820.334 326.414
(0.094) (0.108) (0.460) (0.141) (0.139) (0.726)

[0.383] [0.856] [0.413] [0.487] [0.856]
N 3835 1929 1929 1929 1929 1929
R2 0.395 0.422 0.355 0.418 0.473 0.113
Control mean 2374.902 2238.218 16606.245 32774.124 25634.269 7706.750
% Change 3.22 4.82 3.95 4.44 3.20 4.24

Note: Data are from the midline survey of Cohort 1 farmers. The dependent variables
are (1) and (2) total rice harvest amount (kg), (3) self-reported revenue from rice sales
(INR), (4) total value of rice harvest calculated using median sales prices in farmers’ lo-
cation (INR), (5) total variable cost of rice cultivation (INR), summation of raw cost
items, and (6) imputed profit of rice harvest (total value of harvest minus total variable
cost, INR). Harvest, revenue, value of harvest, and cost outcomes are winsorized at the
95th percentile, and imputed profit outcome is winsorized at the 2.5th and the 97.5th per-
centiles. All regressions control for vegetation indices from the two pre-intervention Kharif
seasons (2019 and 2020) and demographic characteristics collected in the baseline — the
respondent’s gender, age, literacy level, sole ownership of the primary phone, and house-
hold wealth level, access to irrigation in the upcoming Kharif 2021 season, and whether
the respondent’s primary phone is a feature phone — and imputation dummies for miss-
ing baseline measures. Additionally, we control for whether the respondent completed the
baseline compensation survey before the start of the intervention, the survey modality as-
signment for follow-up surveys (phone or in-person), whether the survey was completed
after switching the modality, and whether the endline survey was conducted in the second
batch (for endline outcomes only). Fixed effects at the randomization strata level are in-
cluded. Robust standard errors are calculated: * p<0.10, ** p<0.05, *** p<0.01. Their
corresponding p-values are reported in parentheses, and Romano and Wolf’s step-down
adjusted p-values are reported in brackets. % changes represent the treatment impacts
over the control means.
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Table 7: The impact of treatment on rice loss (Year 2)

Any rice crop loss Severe rice crop loss (more than 50%)

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

All
events Flood

Other
weather
events

Pests &
diseases Animals

All
events Flood

Other
weather
events

Pests &
diseases Animals

Treated -0.030** -0.014 -0.030** -0.007 0.007 -0.020* 0.003 -0.026*** -0.014** -0.001
(0.041) (0.103) (0.026) (0.591) (0.346) (0.060) (0.589) (0.003) (0.039) (0.844)
[0.030] [0.094] [0.014] [0.848] [0.541] [0.046] [0.848] [0.002] [0.030] [0.848]

N 3973 3973 3973 3973 3973 3973 3973 3973 3973 3973
R2 0.028 0.021 0.010 0.017 0.004 0.025 0.020 0.013 0.020 0.005
Control mean 0.612 0.161 0.317 0.199 0.074 0.208 0.091 0.105 0.053 0.021
% Change -4.86 -8.51 -9.45 -3.52 9.96 -9.55 3.66 -24.30 -25.98 -4.36

Note: Data are from the endline survey of Cohort 1 farmers. The dependent variables are (1) a dummy variable indicating
whether farmers experienced any rice loss during the 2022-2023 Kharif season, (6) a dummy variable indicating whether
farmers experienced severe rice loss that was more than 50% of crops, and (2)-(5) and (7)-(10) dummy variables indicating
rice lost due to specific reasons. All regressions control for vegetation indices from the two pre-intervention Kharif seasons
(2019 and 2020) and demographic characteristics collected in the baseline — the respondent’s gender, age, literacy level,
sole ownership of the primary phone, and household wealth level, access to irrigation in the upcoming Kharif 2021 season,
and whether the respondent’s primary phone is a feature phone — and imputation dummies for missing baseline mea-
sures. Additionally, we control for whether the respondent completed the baseline compensation survey before the start
of the intervention, the survey modality assignment for follow-up surveys (phone or in-person), whether the survey was
completed after switching the modality, and whether the endline survey was conducted in the second batch (for endline
outcomes only). Fixed effects at the randomization strata level are included. Robust standard errors are calculated: *
p<0.10, ** p<0.05, *** p<0.01. Their corresponding p-values are reported in parentheses, and Romano and Wolf’s step-
down adjusted p-values are reported in brackets. % changes represent the treatment impacts over the control means.
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Table 8: The heterogeneous treatment impact on total rice farming by
weather shocks (Year 1)

(1) (2) (3)
Yield Harvest Imputed

(kg/ha) (kg) profit (Rs)
Panel A: Excess rainfall
Treated -7.282 28.023 -352.758

(0.879) (0.450) (0.639)
[1.000] [0.994] [0.994]

Treatment × Excess rainfall 172.790** 170.526** 2592.727*
(0.048) (0.018) (0.075)
[0.395] [0.204] [0.529]

N 3835 3835 1929
Ctrl. mean (No excess rainfall) 2826.766 2474.509 10323.159
Ctrl. mean (Excess rainfall) 2424.854 2122.009 -9.439
Total effect for excess rainfall areas 165.508** 198.549*** 2239.970*

(0.022) (0.001) (0.071)
[0.226] [0.074] [0.529]

Panel B: Cyclone
Treated 0.491 39.169 -209.916

(0.993) (0.519) (0.854)
[1.000] [0.994] [1.000]

Treatment × Cyclone 75.822 68.451 1072.380
(0.369) (0.344) (0.451)
[0.990] [0.988] [0.994]

N 3835 3835 1929
Ctrl. mean (No cyclone) 2624.047 2413.321 12662.899
Ctrl. mean (Cyclone) 2788.968 2342.247 2707.877
Total effect for cyclone areas 76.313 107.620** 862.464

(0.250) (0.014) (0.349)
[0.948] [0.196] [0.990]

Note: Data are from the midline survey of Cohort 1 farmers. The dependent variables are (1) total
rice yield (kg/ha), (2) total rice harvest (kg), and (3) imputed profit of rice harvest, in which the
value of the harvest is calculated using median prices in the farmers’ location (INR). Harvest and
yield outcomes are winsorized at the 95th percentile, and the imputed profit outcome is winsorized
at the 2.5th and the 97.5th percentiles. Weather shocks are defined as follows: “excess rainfall”
refers to more than 250 mm rainfall over two days in the period of August 16 to October 15 in
2021 (i.e., the main growing stage) and is defined at the block level; “cyclone” refers to more than
50 mm rainfall over two days in the period of December 4 to December 10 in 2021 (i.e. the period
of Cyclonic Storm Jawad) and is defined at the block level. All regressions control for vegetation
indices from the two pre-intervention Kharif seasons (2019 and 2020) and demographic character-
istics collected in the baseline — the respondent’s gender, age, literacy level, sole ownership of the
primary phone, and household wealth level, access to irrigation in the upcoming Kharif 2021 sea-
son, and whether the respondent’s primary phone is a feature phone — and imputation dummies
for missing baseline measures. Additionally, we control for whether the respondent completed the
baseline compensation survey before the start of the intervention, the survey modality assignment
for follow-up surveys (phone or in-person), whether the survey was completed after switching the
modality, and whether the endline survey was conducted in the second batch (for endline outcomes
only). For the total rice harvest and imputed profit outcomes, two additional variables - total rice
farming area reported at the baseline and whether its value is imputed with block median - are
controlled. Fixed effects at the randomization strata level are included. Standard errors are clus-
tered at block level: * p<0.10, ** p<0.05, *** p<0.01. Their corresponding p-values are reported
in parentheses, and Romano and Wolf’s step-down adjusted p-values are reported in brackets.44



Table 9: The heterogeneous treatment impact on total rice farming
by weather shocks (Year 2)

(1) (2) (3)
Yield Harvest Severe rice

(kg/ha) (kg) crop loss
Panel A: River flooding
Treated 85.947** 156.609** -0.026**

(0.048) (0.032) (0.031)
[0.489] [0.377] [0.377]

Treatment × River flooding -104.654 -149.368 0.032
(0.430) (0.455) (0.199)
[0.994] [0.994] [0.918]

N 3733 3733 3973
Ctrl. mean (No river flooding) 3615.080 2720.652 0.152
Ctrl. mean (River flooding) 2519.552 1947.246 0.451
Total effect for river flooding areas -18.707 7.241 0.006

(0.882) (0.969) (0.785)
[1.000] [1.000] [0.998]

Panel B: Scarce rainfall
Treated 49.693 85.687 -0.006

(0.311) (0.279) (0.595)
[0.978] [0.968] [0.994]

Treatment × Scarce rainfall 57.248 155.125 -0.052**
(0.574) (0.422) (0.016)
[0.994] [0.992] [0.196]

N 3733 3733 3973
Ctrl. mean (No scarce rainfall) 3561.405 2737.797 0.183
Ctrl. mean (Scarce rainfall) 2925.115 2078.723 0.278
Total effect for scarce rainfall areas 106.942 240.812 -0.058***

(0.250) (0.179) (0.002)
[0.948] [0.866] [0.074]

Note: Data are from the endline survey of Cohort 1 farmers. The dependent variables are (1)
total rice yield (kg/ha), (2) total rice harvest (kg), and (3) a dummy indicating whether the re-
spondent experienced severe (>50%) rice loss. Harvest and yield outcomes are winsorized at the
95th percentile. Weather shocks are defined as follows: “river flooding” refers to river flooding
in August 2022 and is defined at the panchayat level; and “scarce rainfall” refers to less than 450
mm rainfall over the period of August 16 to October 15 in 2022 (i.e., the main growing stage)
and is defined at the block level. All regressions control for vegetation indices from the two
pre-intervention Kharif seasons (2019 and 2020) and demographic characteristics collected in the
baseline — the respondent’s gender, age, literacy level, sole ownership of the primary phone, and
household wealth level, access to irrigation in the upcoming Kharif 2021 season, and whether the
respondent’s primary phone is a feature phone — and imputation dummies for missing baseline
measures. Additionally, we control for whether the respondent completed the baseline compen-
sation survey before the start of the intervention, the survey modality assignment for follow-up
surveys (phone or in-person), whether the survey was completed after switching the modality,
and whether the endline survey was conducted in the second batch (for endline outcomes only).
For the total rice harvest outcome, two additional variables – total rice farming area reported at
the baseline and whether its value is imputed with block median – are controlled. Fixed effects
at the randomization strata level are included. Standard errors are clustered at the panchayat
level for the “river flooding” panel and at the block level for the “scarce rainfall” panel: * p<0.10,
** p<0.05, *** p<0.01. Their corresponding p-values are reported in parentheses, and Romano
and Wolf’s step-down adjusted p-values are reported in brackets.
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Table 10: The heterogeneous treatment impact on total rice farming by baseline yield

Midline Endline

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

Adoption
core

index

Cultivation
area
(ha)

Yield
(kg/ha)

Harvest
(kg)

Imputed
profit
(Rs)

Adoption
core

index

Cultivation
area
(ha)

Yield
(kg/ha)

Harvest
(kg)

Severe
rice
crop
loss

Treated 0.046 0.036** 26.131 157.418** 1391.575 0.088* 0.036** 31.576 166.288** -0.015
(0.247) (0.043) (0.676) (0.014) (0.251) (0.097) (0.033) (0.568) (0.037) (0.301)
[0.824] [0.104] [0.986] [0.018] [0.824] [0.333] [0.066] [0.974] [0.080] [0.888]

Treated × High productivity 0.048 -0.051** 32.448 -167.338* -2219.132 -0.079 -0.038 68.165 -82.557 -0.010
(0.393) (0.044) (0.705) (0.061) (0.231) (0.307) (0.124) (0.416) (0.466) (0.638)
[0.950] [0.104] [0.986] [0.164] [0.796] [0.888] [0.439] [0.950] [0.952] [0.986]

N 4080 3835 3835 3835 1929 2911 3733 3733 3733 3973
R2 0.016 0.435 0.054 0.395 0.114 0.020 0.386 0.053 0.354 0.025

Ctrl mean (Low productivity) -0.011 0.857 2569.700 2168.568 5548.136 -0.042 0.746 3231.132 2337.979 0.247
Ctrl mean (High productivity) 0.012 0.918 2874.389 2606.683 10120.473 0.046 0.808 3573.607 2813.683 0.165

Total effect for high productivity 0.093** -0.015 58.578 -9.920 -827.557 0.009 -0.002 99.742 83.731 -0.025*
(0.020) (0.399) (0.319) (0.876) (0.557) (0.876) (0.912) (0.113) (0.303) (0.099)
[0.036] [0.950] [0.888] [0.988] [0.974] [0.988] [0.988] [0.385] [0.888] [0.341]

Note: Data are from the midline and endline survey of Cohort 1 farmers. The dependent variables are (1) and (6) summary index of adoptions (core practices),
(2) and (7) total rice cultivation area (ha), (3) and (8) total rice yield (kg/ha), (4) and (9) total rice harvest (kg), (5) imputed profit of rice harvest, in which
the value of the harvest is calculated using median prices in farmers’ location (INR), and (10) a dummy indicating whether the respondent experienced severe
(>50%) rice loss. Area, yield and harvest outcomes are winsorized at the 95th percentile, and imputed profit outcome is winsorized at the 2.5th and the 97.5th
percentiles. “High yield” refers to the respondent’s baseline rice yield of the Kharif 2020-2021 season being above the median value. All regressions control for
vegetation indices from the two pre-intervention Kharif seasons (2019 and 2020) and demographic characteristics collected in the baseline — the respondent’s
gender, age, literacy level, sole ownership of the primary phone, and household wealth level, access to irrigation in the upcoming Kharif 2021 season, and
whether the respondent’s primary phone is a feature phone — and imputation dummies for missing baseline measures. Additionally, we control for whether
the respondent completed the baseline compensation survey before the start of the intervention, the survey modality assignment for follow-up surveys (phone
or in-person), whether the survey was completed after switching the modality, and whether the endline survey was conducted in the second batch (for endline
outcomes only). For the harvest and profit outcomes, two additional variables – the total rice farming area reported at the baseline and whether its value is im-
puted with the block median – are controlled. Fixed effects at the randomization strata level are included. Robust standard errors are calculated: * p<0.10, **
p<0.05, *** p<0.01. Their corresponding p-values are reported in parentheses, and Romano and Wolf’s step-down adjusted p-values are reported in brackets.
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Table 11: The impact of treatment on primary rice plot farming

(1) (2) (3) (4) (5) (6)
Planted Cultivation Harvest Reported Reported VI-predicted

rice area (kg) yield yield yield
(ha) (reported (measured (measured

area) area) area)
Panel A: Year 1 - Kharif 21
Treated -0.001 0.000 11.423 103.289 104.702 25.636**

(0.007) (0.003) (12.168) (64.065) (112.178) (10.430)
N 4008 3220 3220 3220 3220 3220
R2 0.007 0.441 0.354 0.048 0.048 0.119
Control mean 0.943 0.164 473.989 2936.003 4352.503 2998.045
% Change -0.16 0.24 2.41 3.52 2.41 0.86
Panel B: Year 2 - Kharif 22
Treated -0.003 -0.002 7.533 68.160 -8.639 -12.616

(0.008) (0.002) (11.279) (60.740) (108.540) (10.796)
N 3935 3194 3194 3194 3194 3194
R2 0.009 0.493 0.415 0.043 0.050 0.129
Control mean 0.942 0.152 532.180 3682.927 5053.424 4036.924
% Change -0.35 -1.48 1.42 1.85 -0.17 -0.31
Panel C: Pooled Year 1 and Year 2
Treated -0.002 -0.001 9.283 85.457* 48.906 6.906

(0.005) (0.002) (9.158) (43.965) (84.772) (7.467)
N 7943 6414 6414 6414 6414 6414
R2 0.006 0.465 0.380 0.042 0.045 0.120
Control mean 0.943 0.158 502.623 3303.537 4697.401 3509.239
% Change -0.24 -0.54 1.85 2.59 1.04 0.20

Note: Data are from the midline and endline survey of Cohort 1 farmers. The dependent variables all
refer to the primary rice plot and are (1) whether farmers planted rice, (2) the total rice cultivation area
(ha), (3) self-reported rice harvest (kg), (4) rice yield (kg/ha) calculated using self-reported harvest and
self-reported land size, (5) rice yield (kg/ha) calculated using self-reported harvest and GPS measured
land size, and (6) VI-predicted yield (kg/ha). Area, yield and harvest outcomes are winsorized at the
95th percentile. All regressions control for vegetation indices from the two pre-intervention Kharif seasons
(2019 and 2020) and demographic characteristics collected in the baseline — the respondent’s gender, age,
literacy level, sole ownership of the primary phone, and household wealth level, access to irrigation in the
upcoming Kharif 2021 season, and whether the respondent’s primary phone is a feature phone — and
imputation dummies for missing baseline measures. Additionally, we control for whether the respondent
completed the baseline compensation survey before the start of the intervention, the survey modality as-
signment for follow-up surveys (phone or in-person), whether the survey was completed after switching the
modality, and whether the endline survey was conducted in the second batch (for endline outcomes only).
For the primary rice-plot harvest outcome, one additional variable – primary rice-plot land size measured
by GPS at the baseline – is controlled. Fixed effects at the randomization strata level are included. Stan-
dard errors are robust in Panel A and B and clustered at the farmer level in Panel C, reported in parenthe-
ses: * p<0.10, ** p<0.05, *** p<0.01. % changes represent the treatment impacts over the control means.
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Table 12: The impact of treatment on the primary rice-plot yield (VI-predicted
yield)

Analysis sample Full sample
(1) (2) (3) (4) (5) (6)

In-person Total Survey Cohort 1 Cohort 2 Full
sample rice consent sample sample RCT
(profit/ sample sample sample

adoption) (yield)
Panel A: Year 1 - Kharif 21
Treated 11.476 17.693* 19.422** 13.787*

(11.648) (9.146) (8.770) (7.624)
N 1929 3835 4140 5204
R2 0.124 0.107 0.106 0.100
Control mean 3005.853 2991.779 2978.179 2962.892
Panel B: Year 2 - Kharif 22
Treated -12.089 -11.216 -11.921 -12.899 -5.470 -8.398

(12.387) (9.450) (9.794) (8.588) (6.077) (5.164)
N 2724 3733 4194 5204 8463 13667
R2 0.133 0.130 0.121 0.115 0.115 0.114
Control mean 3985.455 3984.432 3940.554 3905.160 3826.659 3856.543

Note: Data are from the midline and endline survey of Cohort 1 and 2 farmers. Different columns use different sam-
ples. The dependent variables are VI-predicted yields. All regressions control for vegetation indices from the one
pre-intervention Kharif seasons (2019) and demographic characteristics collected in the baseline — the respondent’s
gender, age, literacy level, sole ownership of the primary phone, and household wealth level, access to irrigation in
the upcoming Kharif 2021 season, and whether the respondent’s primary phone is a feature phone — and impu-
tation dummies for missing baseline measures. Additionally, we control for whether the respondent completed the
baseline compensation survey before the start of the intervention. Fixed effects at the randomization strata level
are included. Bootstrap standard errors are reported in parentheses: * p<0.10, ** p<0.05, *** p<0.01.
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Table 13: Estimated Benefit-Cost Ratios (BCRs)

(1) (2) (3) (4) (5)
Farmer Proportion Total Total Benefit-cost
reach affected benefit cost ratio
(in by excess (in US$ (in US$ central estimates

millions) rainfall millions) millions) (95% CI)
Estimated using the average impact on profit
Panel A. BCR in 2021
Profit measure:

As specified in PAP 1.371 / 6.056 0.972 6.23 (-28.51, 40.97)
Using winsorized cost components 1.371 / 8.827 0.972 9.08 (-22.69, 40.86)
Unsold harvest valued at retail price 1.371 / 18.090 0.972 18.62 (-30.85, 68.08)

Reference year: 2021 / 2021 2021
Estimated using the impact on profit in areas hit by excess rainfall
Panel B. BCR in 2021
Profit measure:

As specified in PAP 1.371 21% 8.882 0.972 9.14 (0.02, 18.26)
Using winsorized cost components 1.371 21% 9.931 0.972 10.22 (3.26, 17.18)
Unsold harvest valued at retail price 1.371 21% 14.078 0.972 14.49 (-0.47, 29.44)

Reference year: 2021 2021 2021 2021
Panel C. BCR in 2021, adjusted for the long-run prevalence of excess rainfall
Profit measure:

As specified in PAP 1.371 6% 2.662 0.972 2.74 (0.01, 5.47)
Using winsorized cost components 1.371 6% 2.976 0.972 3.06 (0.98, 5.15)
Unsold harvest valued at retail price 1.371 6% 4.219 0.972 4.34 (-0.14, 8.82)

Reference year: 2021 2014-2023 2021 2021
Panel D. 3-year BCR, 2021-2023
Profit measure:

As specified in PAP 3.173 8% 7.394 0.998 7.41 (0.01, 14.81)
Using winsorized cost components 3.173 8% 8.267 0.998 8.29 (2.64, 13.93)
Unsold harvest valued at retail price 3.173 8% 11.720 0.998 11.75 (-0.38, 23.88)

Reference year: 2021-2023 2021-2023 2021-2023 2021-2023
Panel E. Long-run BCR
Profit measure:

As specified in PAP 6.872 6% 11.939 1.016 11.75 (0.02,23.48)
Using winsorized cost components 6.872 6% 13.348 1.016 13.14 (4.19,22.09)
Unsold harvest valued at retail price 6.872 6% 18.923 1.016 18.62 (-0.60,37.85)

Reference year: 2023 2014-2023 2023 2023

Note: The average impacts on profit are from Column (6) in Table 6 and Appendix Table A8; impacts on profit in
excess rainfall areas are from Table 8 and Appendix Table A9. They are estimated impacts on profit per farmer in
the Kharif 2021 season. “Farmer reach” refers to the number of farmers registered for the service in Odisha. “Pro-
portion affected by excess rainfall” refers to the share of farmers affected by excess rainfall in Odisha. The long-run
prevalence of excess rainfall is calculated using the past 10 years’ (2014-2023) prevalence levels. The benefit-cost
ratio is calculated as the total estimated benefit dividing by the total estimated cost. Numbers in the parentheses
stand for the 95% confidence interval. The total benefit of the service equals the treatment impacts on profit per
farmer in the Kharif 2021 season multiplied by the number of relevant farmers reached by the service in that year,
which is calculated as the number of farmers registered for the service in that year for the average impact, and that
number multiplied by the share of farmers in Odisha affected by the excess rainfall shock in that year for the impact
in excess rainfall areas.
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Figure A1: Distribution of self-reported primary rice plot yield (kg/hectare)

Note: Data are from the baseline, midline, and endline survey of Cohort 1 farmers. Yield outcomes are winsorized at the 95th percentile.
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Figure A2: Distribution of crop-cut and predicted primary rice plot yield (CCE Sample)

Note: Data are from the crop cut exercises and yield prediction models.
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Table A1: Attritions of follow-up surveys

Consent to midline Consent to endline Consent to both
(1) (2) (3) (4) (5) (6)

Treated 0.006 -0.161 0.014 -0.162 0.016 -0.066
(0.009) (0.138) (0.012) (0.152) (0.012) (0.163)

Treated × NDVI in Kharif 19 0.084 0.073 0.205
(0.180) (0.199) (0.232)

Treated × NDVI in Kharif 20 0.164 0.137 -0.025
(0.139) (0.173) (0.186)

Treated × Female -0.003 0.002 -0.005
(0.029) (0.031) (0.036)

Treated × Age 0.000 0.001 0.000
(0.001) (0.001) (0.001)

Treated × Literacy index 0.010 -0.000 0.004
(0.010) (0.010) (0.013)

Treated × Primary phone: solely own -0.039 -0.024 -0.044
(0.025) (0.022) (0.029)

Treated × Primary phone: feature -0.005 0.024 -0.011
(0.024) (0.024) (0.028)

Treated × HH wealth index -0.014 0.009 -0.004
(0.011) (0.011) (0.013)

Treated × Access to irrigation 0.003 -0.060** -0.043
(0.023) (0.023) (0.026)

Treated × Compensated before service -0.023 -0.024 -0.033
(0.021) (0.022) (0.025)

Max. NDVI in Kharif 19 0.114 -0.277* -0.167
(0.145) (0.148) (0.187)

Max. NDVI in Kharif 20 -0.246** -0.269** -0.221
(0.119) (0.133) (0.152)

Female 0.017 0.062*** 0.051*
(0.021) (0.022) (0.026)

Age 0.001* 0.002*** 0.003***
(0.001) (0.001) (0.001)

Literacy index -0.004 -0.001 -0.002
(0.007) (0.008) (0.009)

Primary phone: solely own 0.022 0.015 0.032*
(0.016) (0.016) (0.019)

Primary phone: feature 0.030* 0.000 0.045**
(0.016) (0.018) (0.020)

HH wealth index 0.016** 0.005 0.017*
(0.008) (0.008) (0.009)

Access to irrigation 0.006 0.053*** 0.048**
(0.017) (0.018) (0.020)

Compensated before service 0.115*** 0.061*** 0.124***
(0.017) (0.016) (0.020)

N 5204 5204 5204 5204 5204 5204
R2 0.000 0.024 0.000 0.018 0.000 0.023
Control mean 0.792 0.792 0.799 0.799 0.663 0.663
Treated × covariates N Y N Y N Y
p-value of joint F-test 0.495 0.228 0.350

Note: Data are from the midline and endline survey of Cohort 1 farmers. The dependent variables are whether farmers
consented to (1)-(2) the midline surveys, (3)-(4) the endline surveys, and (5)-(6) both surveys. Fixed effects at the ran-
domization strata level are included. Robust standard errors in parentheses: * p<0.10, ** p<0.05, *** p<0.01. The last
row shows the p-value for a joint test of all interaction variables and the treatment indicator.
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Table A2: Differential attrition:
Correlation between VI-predicted yield (in thousands) and survey responses

(1) (2) (3) (4)
Responded Responded Responded Consented
to profit/ to profit/ to yield to
adoption adoption questions surveys
questions questions

Panel A: Midline survey
Treated -0.024 -0.007 -0.033 -0.047

(0.111) (0.059) (0.059) (0.056)
Treated × VI-predicted yield 0.017 0.011 0.012 0.018

(0.036) (0.020) (0.019) (0.018)
VI-predicted yield -0.030 0.005 0.010 0.004

(0.031) (0.019) (0.020) (0.018)
N 1885 5204 5204 5204
R2 0.002 0.001 0.000 0.000
Avg response rate 0.823 0.371 0.737 0.796
Estimated at avg yield: control 0.811 0.358 0.735 0.793
Estimated at avg yield: treated 0.836 0.383 0.739 0.798
p-value: C=T 0.146 0.004 0.681 0.501
Panel B: Endline survey
Treated 0.113 0.063 0.094 -0.005

(0.098) (0.079) (0.072) (0.075)
Treated × VI-predicted yield -0.020 -0.011 -0.019 0.005

(0.025) (0.020) (0.018) (0.018)
VI-predicted yield 0.048 -0.008 0.029 -0.008

(0.030) (0.024) (0.022) (0.019)
N 3294 5204 5204 5204
R2 0.002 0.001 0.001 0.000
Avg response rate 0.691 0.523 0.717 0.806
Estimated at avg yield: control 0.674 0.513 0.707 0.799
Estimated at avg yield: treated 0.707 0.533 0.728 0.813
p-value: C=T 0.040 0.116 0.112 0.235

Note: The dependent variables are indicators whether farmers responded to specific questions in the follow-up surveys,
corresponding to various analysis samples we used. Column (1) restricts the sample to farmers who were assigned to
in-person surveys initially, and Columns (2)-(4) use the full Cohort 1 sample. Fixed effects at the randomization strata
level are included. Bootstrap standard errors are reported in parentheses: * p<0.10, ** p<0.05, *** p<0.01.
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Table A3: List of agricultural practices

Outcome Definition
Suitable seed Adopted suitable seeds that have recommended maturity duration:

seeds that mature in 100-120 days for upland areas, in 120-140 days
for medium land areas, and over 140 days for lowland areas.

Seed replacement Adopted correct seed replacement rate: local seeds may be reused
multiple times, variety seeds up to three times, and hybrid seeds only
once.

Seed treatment Treated seeds with chemicals.
Pesticide Adopted any pesticide.
Herbicide Adopted any recommended herbicide.
Nursery fertilizer fym Adopted the recommended fertilizer in nursery: FYM.
Nursery fertilizer dap Adopted the recommended fertilizer in nursery: DAP.
Nursery fertilizer mop Adopted the recommended fertilizer in nursery: MOP.
Nursery fertilizer urea Adopted the recommended fertilizer in nursery: Urea.
Fertilizer dap Applied the recommended fertilizer: DAP.
Fertilizer mop Applied the recommended fertilizer: MOP.
Fertilizer urea Applied the recommended fertilizer: Urea.
Micronutrient zinc Applied the recommended micronutrient fertilizer: Zinc.
Line method Adopted line method for transplanting or broadcasting.
Transplanting time Transplanted seedling at the recommended time (i.e., between July 1

and August 15).
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Table A4: The impact of treatment on adoption - Core practices

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11)
Core Suitable Seed Seed Pesticide Herbicide Fertilizer Fertilizer Fertilizer Line Micronutrient
index seed replacement treatment dap mop urea method zinc

Panel A: Year 1 - Kharif 21
Treated 0.068** -0.001 0.017* 0.010 0.025* 0.009 0.004 0.003 0.018*

(0.028) (0.013) (0.009) (0.014) (0.014) (0.009) (0.015) (0.013) (0.009)
N 4057 4057 4057 4057 4057 4057 4057 4057 4057
R2 0.016 0.005 0.007 0.012 0.009 0.010 0.012 0.010 0.011
Control mean 0.003 0.201 0.883 0.290 0.420 0.077 0.490 0.730 0.877
Baseline mean 0.183 0.800 0.088 0.396 0.652 0.863
Panel B: Year 2 - Kharif 22
Treated 0.048 -0.013 0.015 0.020 0.020 0.015 -0.004 0.014 0.019 -0.004 -0.001

(0.039) (0.017) (0.012) (0.017) (0.017) (0.010) (0.015) (0.018) (0.018) (0.014) (0.008)
N 2910 2910 2910 2910 2910 2910 2910 2910 2910 2908 2910
R2 0.019 0.010 0.011 0.010 0.009 0.012 0.014 0.025 0.041 0.008 0.015
Control mean -0.000 0.344 0.887 0.253 0.389 0.073 0.494 0.510 0.519 0.170 0.049
Baseline mean 0.185 0.796 0.091 0.393 0.649 0.851 0.146 0.023

Note: Data are from the midline and endline survey of Cohort 1 farmers. The dependent variables are dummy variables indicating whether farm-
ers adopted the specific practice correctly or not. The selected practices are practices that are relevant to all farmers and constitute the “core”
summary index. The analysis sample is the full set of farmers who consented to the respective survey and responded to all relevant adoption ques-
tions. All regressions control for vegetation indices from the two pre-intervention Kharif seasons (2019 and 2020) and demographic characteristics
collected in the baseline — the respondent’s gender, age, literacy level, sole ownership of the primary phone, and household wealth level, access
to irrigation in the upcoming Kharif 2021 season, and whether the respondent’s primary phone is a feature phone — and imputation dummies
for missing baseline measures. Additionally, we control for whether the respondent completed the baseline compensation survey before the start
of the intervention, the survey modality assignment for follow-up surveys (phone or in-person), whether the survey was completed after switching
the modality, and whether the endline survey was conducted in the second batch (for endline outcomes only). Fixed effects at the randomization
strata level are included. Robust standard errors in parentheses: * p<0.10, ** p<0.05, *** p<0.01.
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Table A5: The impact of treatment on adoption - Transplanting practices

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14) (15) (16)
Transplanting Nursery Suitable Seed Seed Pesticide* Herbicide* Nursery Nursery Nursery Fertilizer Fertilizer Fertilizer Micronutrient Line Transplanting

index fertilizer seed* replacement* treatment* fertilizer fertilizer fertilizer dap* mop* urea* zinc* method* time
urea fym dap mop

Panel A: Year 1 - Kharif 21
Treated 0.096*** 0.002 0.008 0.021** 0.011 0.027* 0.008 0.010 0.021 0.023 -0.000 0.002 0.013 0.018*

(0.031) (0.014) (0.013) (0.009) (0.016) (0.015) (0.009) (0.011) (0.016) (0.016) (0.016) (0.013) (0.009) (0.010)
N 3458 3458 3458 3458 3458 3458 3458 3458 3458 3458 3458 3458 3458 3458
R2 0.015 0.009 0.007 0.006 0.014 0.008 0.009 0.006 0.007 0.004 0.013 0.011 0.009 0.011
Control mean 0.005 0.742 0.202 0.893 0.313 0.419 0.076 0.597 0.334 0.393 0.473 0.738 0.887 0.081
Baseline mean 0.182 0.828 0.092 0.385 0.657 0.863 0.027
Panel B: Year 2 - Kharif 22
Treated 0.109** -0.001 0.022* 0.017 0.016 0.008 0.041** 0.001 0.048*** 0.007 0.012 0.029 -0.002 -0.006 0.026

(0.042) (0.019) (0.012) (0.020) (0.019) (0.011) (0.018) (0.017) (0.017) (0.015) (0.019) (0.020) (0.009) (0.015) (0.020)
N 2454 2454 2454 2454 2454 2454 2454 2454 2454 2454 2454 2454 2454 2454 2454
R2 0.018 0.012 0.009 0.011 0.007 0.010 0.016 0.009 0.016 0.013 0.022 0.046 0.014 0.008 0.008
Control mean 0.001 0.340 0.893 0.280 0.390 0.077 0.683 0.272 0.245 0.500 0.527 0.537 0.054 0.178 0.541
Baseline mean 0.183 0.829 0.095 0.376 0.661 0.854 0.026 0.147 0.766

Note: Data are from the midline and endline survey of Cohort 1 farmers. The dependent variables are dummy variables indicating whether farmers adopted the specific practice correctly or not. The selected practices
are practices that are relevant to farmers that practice transplanting and constitute the “transplanting” summary index. Practices with “*” in the column titles are included in creation of the “core” summary index.
The analysis sample is the set of farmers who consented to the respective survey, responded to all relevant adoption questions, and reported transplanting in the Kharif 2020-2021 season in the baseline survey. All
regressions control for vegetation indices from the two pre-intervention Kharif seasons (2019 and 2020) and demographic characteristics collected in the baseline — the respondent’s gender, age, literacy level, sole own-
ership of the primary phone, and household wealth level, access to irrigation in the upcoming Kharif 2021 season, and whether the respondent’s primary phone is a feature phone — and imputation dummies for missing
baseline measures. Additionally, we control for whether the respondent completed the baseline compensation survey before the start of the intervention, the survey modality assignment for follow-up surveys (phone or
in-person), whether the survey was completed after switching the modality, and whether the endline survey was conducted in the second batch (for endline outcomes only). Fixed effects at the randomization strata level
are included. Robust standard errors in parentheses: * p<0.10, ** p<0.05, *** p<0.01.
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Table A6: The impact of treatment on rice production cost and investment (Year 1)

Variable costs (Rs) Investments (Rs)
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)

Seed Fertilizer Pesticide Irrigation Worker Tractor Transport Other Total Irrigation Tractor Total
Panel A: Indicators for incurred specific expenditure
Treated 0.009 0.010* 0.025 0.017 0.023* 0.028*** 0.021 0.030* 0.009 0.013* 0.017

(0.020) (0.005) (0.022) (0.019) (0.013) (0.010) (0.021) (0.018) (0.010) (0.007) (0.011)
N 1929 1929 1929 1929 1929 1929 1929 1929 1929 1929 1929
R2 0.106 0.022 0.099 0.042 0.073 0.012 0.016 0.012 0.008 0.015 0.017
Control mean 0.696 0.973 0.459 0.251 0.895 0.941 0.737 0.196 0.046 0.023 0.068
Panel B: Values of specific expenditure
Treated 68.227 237.727 33.336 3.561 371.015 142.038 78.724 21.460 796.483 133.862** 199.078* 381.531***

(51.472) (155.585) (26.129) (24.408) (270.247) (198.266) (61.355) (18.343) (571.580) (67.034) (108.114) (140.433)
N 1929 1929 1929 1929 1929 1929 1929 1929 1929 1929 1929 1929
R2 0.208 0.290 0.154 0.038 0.360 0.070 0.060 0.030 0.455 0.012 0.014 0.020
Control mean 1249.552 5175.614 376.541 261.267 9139.174 6926.658 1321.238 162.189 25634.269 138.181 264.700 440.971
Control sd 1407.140 4162.338 578.825 570.972 8459.240 5322.160 1449.391 400.715 18845.093 1036.666 2304.576 2710.573

Note: Data are from the midline survey of Cohort 1 farmers. The dependent variables are (Panel A) dummy variables indicating whether farmers spent on
specific inputs, and (Panel B) continuous variables indicating the amount of money (INR) that farmers spent on specific inputs, which are winsorized at the
95th percentile for variable costs and at the 99th percentile for investments. Everyone except 9 farmers (99.6%) has incurred some variable costs, so we do
not examine the treatment impact on this dummy variable (Panel A Column (9)). All regressions control for vegetation indices from the two pre-intervention
Kharif seasons (2019 and 2020) and demographic characteristics collected in the baseline — the respondent’s gender, age, literacy level, sole ownership of the
primary phone, and household wealth level, access to irrigation in the upcoming Kharif 2021 season, and whether the respondent’s primary phone is a feature
phone — and imputation dummies for missing baseline measures. Additionally, we control for whether the respondent completed the baseline compensation
survey before the start of the intervention, the survey modality assignment for follow-up surveys (phone or in-person), and whether the survey was completed
after switching the modality. Fixed effects at the randomization strata level are included. Robust standard errors in parentheses: * p<0.10, ** p<0.05, ***
p<0.01.
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Table A7: The occurrence of weather shocks

Weather event Month % of rural households % of study sample
in Odisha affected farmers affected

Panel A: Year 1 - Kharif 2021
Excess rainfall August-October 21% 30%
Cyclone December 29% 46%

Panel B: Year 2 - Kharif 2022
River flooding August / 17%
Scarce rainfall August-October 43% 33%

Note: Weather shocks are defined as follows: “excess rainfall” refers to received
more than 250 mm rainfall over two days in the period of August 16 to October
15 in 2021 (i.e., the main growing stage) and is defined at the block level; “cy-
clone” refers to received more than 50 mm rainfall over two days in the period of
December 4 to December 10 in 2021 (i.e. the period of Cyclonic Storm Jawad)
and is defined at the block level; “river flooding” refers to experienced river flood-
ing in August 2022 and is defined at the panchayat level; and “scarce rainfall”
refers to received less than 450 mm rainfall over the period of August 16 to Oc-
tober 15 in 2022 (i.e., the main growing stage) and is defined at the block level.
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Table A8: The impact of treatment on rice revenue and profit (Year 1) [alternative
outcome construction]

Full sample In-person sample

(1) (2) (3) (4) (5) (6)

Harvest
(kg)

Harvest
(kg)

Reported
revenue

(Rs)

Value of
harvest

(Rs)

Variable
cost
(Rs)

Imputed
profit
(Rs)

Panel A: Profit alternative version 1
Treated 76.487* 107.991 656.696 1455.572 893.612* 475.784

(0.094) (0.108) (0.460) (0.141) (0.064) (0.576)
[0.381] [0.820] [0.381] [0.381] [0.820]

N 3835 1929 1929 1929 1929 1929
R2 0.395 0.422 0.355 0.418 0.486 0.155
Control mean 2374.902 2238.218 16606.245 32774.124 24612.232 8057.171
% Change 3.22 4.82 3.95 4.44 3.63 5.91
Panel B: Profit alternative version 2
Treated 76.487* 107.991 656.696 1927.329 893.612* 975.047

(0.094) (0.108) (0.460) (0.195) (0.064) (0.462)
[0.379] [0.752] [0.431] [0.379] [0.752]

N 3835 1929 1929 1929 1929 1929
R2 0.395 0.422 0.355 0.369 0.486 0.201
Control mean 2374.902 2238.218 16606.245 50544.226 24612.232 25855.563
% Change 3.22 4.82 3.95 3.81 3.63 3.77

Note: Data are from the midline survey of Cohort 1 farmers. The dependent variables are
(1) and (2) total rice harvest (kg), (3) self-reported revenue from rice sales (INR), (4) total
value of rice harvest (INR), (5) total variable cost of rice cultivation (INR), and (6) im-
puted profit of rice harvest (total value of harvest minus total variable cost, INR). Values of
harvest are constructed using sales prices in Panel A and using both retail prices and sales
prices in Panel B. Variable costs are summation of winsorized cost items in Panel A and B.
Profits are constructed using the value of harvest and variable cost in the same panel. Har-
vest, revenue, value of harvest, and cost outcomes are winsorized at the 95th percentile, and
imputed profit outcome is winsorized at the 2.5th and the 97.5th percentiles. All regres-
sions control for vegetation indices from the two pre-intervention Kharif seasons (2019 and
2020) and demographic characteristics collected in the baseline — the respondent’s gender,
age, literacy level, sole ownership of the primary phone, and household wealth level, access
to irrigation in the upcoming Kharif 2021 season, and whether the respondent’s primary
phone is a feature phone — and imputation dummies for missing baseline measures. Addi-
tionally, we control for whether the respondent completed the baseline compensation survey
before the start of the intervention, the survey modality assignment for follow-up surveys
(phone or in-person), and whether the survey was completed after switching the modality.
Fixed effects at the randomization strata level are included. Robust standard errors are
calculated: * p<0.10, ** p<0.05, *** p<0.01. Their corresponding p-values are reported in
parentheses, and Romano and Wolf’s step-down adjusted p-values are reported in brackets.
% changes represent the treatment impacts over the control means.
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Table A9: The treatment impact in areas with and without
a weather shock (Year 1) [alternative outcome construction]

Imputed profit (Rs)

(1) (2)
Alternative
version 1

Alternative
version 2

Panel A: Excess rainfall
Treated -244.373 60.807

(0.703) (0.952)
[0.998] [1.000]

Treatment × Excess rainfall 2748.700** 3489.480
(0.023) (0.119)
[0.204] [0.723]

N 1929 1929
Ctrl. mean (No excess rainfall) 10415.732 28187.468
Ctrl. mean (Excess rainfall) 1101.414 18978.419
Total effect for excess rainfall areas 2504.327** 3550.287*

(0.013) (0.080)
[0.202] [0.581]

Panel B: Cyclone
Treated 111.163 871.989

(0.920) (0.633)
[1.000] [0.998]

Treatment × Cyclone 729.408 206.164
(0.557) (0.916)
[0.996] [1.000]

N 1929 1929
Ctrl. mean (No cyclone) 12081.677 30374.457
Ctrl. mean (Cyclone) 3997.971 21297.713
Total effect for cyclone areas 840.571 1078.152

(0.208) (0.250)
[0.914] [0.948]

Note: Data are from the midline survey of Cohort 1 farmers. The dependent vari-
ables are imputed profits of rice harvest, and winsorized at the 2.5th and the 97.5th
percentiles. Weather shocks are defined as follows: “excess rainfall” refers to received
more than 250 mm rainfall over two days in the period of August 16 to October 15
in 2021 (i.e., the main growing stage) and is defined at the block level; “cyclone”
refers to received more than 50 mm rainfall over two days in the period of Decem-
ber 4 to December 10 in 2021 (i.e. the period of Cyclonic Storm Jawad) and is de-
fined at the block level. All regressions control for vegetation indices from the two
pre-intervention Kharif seasons (2019 and 2020) and demographic characteristics col-
lected in the baseline — the respondent’s gender, age, literacy level, sole ownership of
the primary phone, and household wealth level, access to irrigation in the upcoming
Kharif 2021 season, and whether the respondent’s primary phone is a feature phone —
and imputation dummies for missing baseline measures. Additionally, we control for
whether the respondent completed the baseline compensation survey before the start
of the intervention, the survey modality assignment for follow-up surveys (phone or
in-person), and whether the survey was completed after switching the modality. Two
additional variables - total rice farming area reported at the baseline and whether its
value is imputed with block median - are controlled. Fixed effects at the randomiza-
tion strata level are included. Standard errors are clustered at block level: * p<0.10,
** p<0.05, *** p<0.01. Their corresponding p-values are reported in parentheses
and Romano and Wolf’s step-down adjusted p-values are reported in brackets.67



B Assignment of Survey Modality

We used in-person and phone surveys in the two follow-up surveys with cohort 1 farmers.
For the midline follow-up survey, the survey modality assignment followed a two-stage

randomization. We first randomly selected 40% of panchayats as the “phone survey only”
areas and the rest of panchayats as the “mixed modes of survey” areas, stratifying by district.
We then randomly assigned 50% of farmers in the mixed modes of survey areas to receive
an in-person survey, and the remaining farmers to receive a phone survey. To maximize the
response rate, we switched the mode of survey after three unsuccessful attempts.

For the endline survey, we randomized farmers into four groups, using a 2 × 2 factorial
design and exogenously varied survey modality (phone or in-person) and the intensity with
which we seek to contact individuals (regular or intensive). Specifically, we randomly allo-
cated farmers in the treatment and control groups to one of four survey protocols (allocation
fractions in parentheses):

• S1 (10%): We contacted each respondent up to 4 times in-person.

• S2 (40%): We contacted each respondent up to 2 times in-person. After two failed
in-person attempts, we followed up with up to 4 attempts to reach respondents by
phone.

• S3 (10%): We contacted each respondent up to 6 times by phone.

• S4 (40%): We contacted each respondent up to 4 times by phone. After 4 failed phone
attempts, we followed up with up to 2 attempts to reach each respondent in person.
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